K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Ta có: \(\dfrac{1}{x-1}\) < \(\dfrac{1}{3x-2}\)

<=> \(\dfrac{1}{x-1}\) - \(\dfrac{1}{3x-2}\) < 0

<=> \(\dfrac{\left(3x-2\right)-\left(x-1\right)}{\left(3x-2\right)\left(x-1\right)}\) < 0

<=> \(\dfrac{2x-1}{\left(3x-2\right)\left(x-1\right)}\) < 0

<=> 2x -1 < 0

<=> x < \(\dfrac{1}{2}\)

Vậy tập nghiệm của bất phương trình S = { x / x <\(\dfrac{1}{2}\)}

22 tháng 4 2017

bạn thiếu đkxđ của pt:x# 1 và x# 2/3

NV
19 tháng 6 2019

\(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(x+3\right)-100\)

\(\Leftrightarrow20x^2-12+15x-5< 10x^2+30x-100\)

\(\Leftrightarrow10x^2-15x+83< 0\)

\(\Leftrightarrow10\left(x-\frac{3}{4}\right)^2+\frac{619}{8}< 0\)

Bất phương trình vô nghiệm

19 tháng 6 2019

cảm ơn bạn nhé

a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)

\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)

=>3x+5<10x-30

=>-7x<-35

hay x>5

b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)

=>14x-80>-11x

=>25x>80

hay x>16/5

a: =>3x-7>5(2x+1,4)

=>3x-7>10x+7

=>-7x>14

hay x<-2

b: \(\Leftrightarrow6+2\left(2x+1\right)>2x-1-12\)

=>6+4x+2>2x-13

=>4x+8>2x-13

=>2x>-21

hay x>-21/2

a) \(\dfrac{1-2x}{4}-2< \dfrac{1-5x}{8}\\ < =>\dfrac{2-4x}{8}-\dfrac{16}{8}< \dfrac{1-5x}{8}\\ < =>2-4x-16< 1-5x\\ < =>-4x+5x< 1-2+16\\ < =>x< 15\)

Vậy : tập nghiệm của bất phương trình là S= \(\left\{x|x< 15\right\}\)

b) \(\dfrac{x-1}{4}-1>\dfrac{x+1}{3}+8\\ < =>\dfrac{3x-3}{12}-\dfrac{12}{12}>\dfrac{4x+4}{12}+\dfrac{96}{12}\\ < =>3x-3-12>4x+4+96\\ < =>3x-4x>4+96+3+12\\ < =>-x>115\\ =>x< -115\)

Vậy: tập nghiệm của bất phương trình là S=\(\left\{x|x< -115\right\}\)

a: =>3x-1>8

=>3x>9

hay x>3

b: \(\Leftrightarrow2x+4< 9\)

=>2x<5

hay x<5/2

c: \(\Leftrightarrow1-2x>12\)

=>-2x>11

hay x<-11/2

d: \(\Leftrightarrow6-4x< 5\)

=>-4x<-1

hay x>1/4

3 tháng 5 2018

Giải các bất phương trình sau :

a) \(\left(x-1\right)\left(x+3\right)< 0\)

Lập bảng xét dấu :

x x-1 x+3 (x-1)(x+3) -3 1 - 0 + - 0 - + + + - +

Nghiệm của bất phương trình là : \(-3< x< 1\)

b) \(\left(2x-1\right)\left(x+2\right)>0\)

Lập bảng xét dấu :

x 2x-1 x+2 (2x-1)(x+2) -2 1 2 0 0 - - + - + + - + +

Nghiệm của bất phương trình là : \(x< -2;x>\dfrac{1}{2}\)

c) \(\dfrac{3x-2}{2x-1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x< \dfrac{1}{2}\end{matrix}\right.\)

d) \(\dfrac{3x+2}{x+1}>2\)

\(\Leftrightarrow\dfrac{3x+2}{x+1}-\dfrac{2\left(x+1\right)}{x+1}>0\)

\(\Leftrightarrow\dfrac{3x+2-2x-2}{x+1}>0\)

\(\Leftrightarrow\dfrac{x}{x+1}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x< -1\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}x\ge0\\x< -1\end{matrix}\right.\)

3 tháng 5 2018

a, (x-1)(x+3) <0

TH1: x-1<0<=>x<1

x+3>0<=>x>-3

=>-3<x<1

TH2: x-1>0<=>x>1

x+3<0<=>x<-3

=>Vô lý

Vậy S={x|-3<x<1}

b,(2x-1)(x+2)>0

TH1: 2x-1\(\ge\)0<=>2x\(\ge\)1<=>x\(\ge\)\(\dfrac{1}{2}\)

x+2\(\ge\)0<=>x\(\ge\)-2

=>x\(\ge\)\(\dfrac{1}{2}\)

TH2: 2x-1<0<=>2x<1<=>x<\(\dfrac{1}{2}\)

x+2<0<=>x<-2

=>x<-2

Vậy S={x|x<-2 hoặc x\(\ge\)\(\dfrac{1}{2}\)}

c, \(\dfrac{3x-2}{2x-1}\)>0 (Tử và mẫu cùng dấu)

TH1 3x-2\(\ge\)0<=>3x\(\ge\)2<=>x\(\ge\)2

2x-1>0<=>2x>1<=>x>\(\dfrac{1}{2}\)

=>x\(\ge\)2

TH2: 3x-2<0<=>3x<2<=>x<\(\dfrac{2}{3}\)

2x-1<0<=>2x<1<=>x<\(\dfrac{1}{2}\)

=>x<\(\dfrac{1}{2}\)

Vậy S={x|x\(\ge\)2 hoặc x<\(\dfrac{1}{2}\)}

d,\(\dfrac{3x+2}{x+1}>2\)

<=>\(\dfrac{3x+2}{x+1}-2\)>0

<=>\(\dfrac{3x-2-2x-2}{x+1}\)>0

<=>\(\dfrac{x-4}{x+1}\)>0 (Tử và mẫu cùng dấu)

TH1: x-4\(\ge\)0<=>x\(\ge\)4

x+1>0<=>x>-1

=>x\(\ge\)-4

TH2: x-4<0<=>x<4

x+1<0<=>x<-1

=>x<-1

Vậy S={x|x\(\ge\)-4 hoặc x<-1}

3 tháng 4 2018

a) 3x-7>4x+2

\(\Leftrightarrow3x-4x>2+7\)

\(\Leftrightarrow-x>9\Leftrightarrow x< -9\)

Vậy S={x<9|x\(\in R\)}

b) 2(x-3)<3-5(2x-1)+4x

\(\Leftrightarrow2x-6< 3-10x+5+4x\)

\(\Leftrightarrow2x+10x-4x< 3+5+6\)

\(\Leftrightarrow8x< 14\Leftrightarrow x< \dfrac{7}{4}\)

Vậy S={x<\(\dfrac{7}{4}\)|x\(\in R\)}

c) (x-2)2+x(x-3)<2x(x-3)+1

\(\Leftrightarrow x^2-4x+4+x^2-3x< 2x^2-6x+1\)

\(\Leftrightarrow-x< -3\)

\(\Leftrightarrow x>3\)

Vậy S =\(\left\{x>3|x\in R\right\}\)

d) \(\dfrac{x-1}{3}-x+1>\dfrac{2x-3}{2}\)

\(\Leftrightarrow2x-2-6x+6>6x-9\)

\(\Leftrightarrow-10x>-13\Leftrightarrow x< \dfrac{13}{10}\)

Vậy S=\(\left\{x< \dfrac{13}{10}|x\in R\right\}\)

Biểu diễn tập nghiệm thì bạn tự làm

12 tháng 5 2017

1) \(2\left(3x-1\right)-3x=10\)

<=> \(6x-2-3x=10\)

<=>\(3x-2=10\)

<=> \(3x=12\)

<=> \(x=4\)

Vậy tập nghiệm của pt S={4}

2) \(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

ĐKXĐ: x khác 0; x khác 1,-1

<=> \(\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}+\dfrac{x\left(x+1\right)}{x\left(x+1\right)}\)= \(\dfrac{3x^2-x}{x\left(x+1\right)}+\dfrac{1}{x\left(x+1\right)}\)

=> \(\left(x+1\right)^2+x\left(x+1\right)\)= \(3x^2-x+1\)

<=> \(x^2+2x+1+x^2+x=3x^2-x+1\)

<=> \(x^2+x^2+2x+x-3x^2+x\)= \(1-1\)

<=> \(-x^2+4x=0\)

<=>\(4x=x^2\)

<=> \(4=x\) ( TMĐKXĐ)

Vậy tập nghiệm của pt S={4}

c) \(\dfrac{2x+1}{3}-\dfrac{3x-2}{2}>\dfrac{1}{6}\)

<=> \(\dfrac{4x+2}{6}-\dfrac{9x-6}{6}>\dfrac{1}{6}\)

<=> \(\dfrac{4x+2-9x+6}{6}-\dfrac{1}{6}>0\)

<=> \(\dfrac{-5x+7}{6}>0\)

Mà 6>0 . Nên \(-5x+7>0\)

Ta có \(-5x+7>0\)

<=> \(-5x>-7\)

<=> \(x< \dfrac{7}{5}\)

Vậy tập nghiệm của bất phương trình S={x thuộc R| \(x< \dfrac{7}{5}\)}

12 tháng 5 2017

1)2.(3x-1)-3x=10

6x-2-3x =10

6x-3x =10+2

3x =12

x =4

Vậy S=4

2) \(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

Đkxđ: \(x\ne0\)\(x\ne-1\)

MTC;x(x+1)

\(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

\(\Leftrightarrow\)\(\dfrac{\left(x+1\right)\left(x+1\right)+x\left(x+1\right)}{x\left(x+1\right)}=\dfrac{x\left(3x-1\right)+1}{x\left(x+1\right)}\)

\(\Leftrightarrow\)(x+1) (x+1)+x(x+1) = x (3x-1)+1

\(\Leftrightarrow\)x2+x+x+1+x2+x =3x2-x+1

\(\Leftrightarrow\)x2+x+x+1+x2+x-3x2+x-1=0

\(\Leftrightarrow\)-x24x=0

\(\Leftrightarrow\)4x-x2=0

\(\Leftrightarrow\)x(4-x)=0

\(\Leftrightarrow\)x=0 hoặc 4-x=0

\(\Leftrightarrow\)x=0 hoặc x =4

3)\(\dfrac{2x+1}{3}-\dfrac{3x-2}{2}>\dfrac{1}{6}\)

\(\Leftrightarrow\)\(\dfrac{2x+1}{3}6-\dfrac{3x-2}{2}6>\dfrac{1}{6}\)6

\(\Leftrightarrow\)2(2x+1)-3(3x-2)>1

\(\Leftrightarrow\)4x+2-9x+6>1

\(\Leftrightarrow\)4x-9x>1-2-6

\(\Leftrightarrow\)-5x>-7

\(\Leftrightarrow\)-5x.\(\dfrac{1}{-5}>-7.\dfrac{1}{-5}\)

\(\Leftrightarrow x>\dfrac{7}{5}\)

22 tháng 4 2017

Giải bài 25 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8