\(\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

1) \(2\left(3x-1\right)-3x=10\)

<=> \(6x-2-3x=10\)

<=>\(3x-2=10\)

<=> \(3x=12\)

<=> \(x=4\)

Vậy tập nghiệm của pt S={4}

2) \(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

ĐKXĐ: x khác 0; x khác 1,-1

<=> \(\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}+\dfrac{x\left(x+1\right)}{x\left(x+1\right)}\)= \(\dfrac{3x^2-x}{x\left(x+1\right)}+\dfrac{1}{x\left(x+1\right)}\)

=> \(\left(x+1\right)^2+x\left(x+1\right)\)= \(3x^2-x+1\)

<=> \(x^2+2x+1+x^2+x=3x^2-x+1\)

<=> \(x^2+x^2+2x+x-3x^2+x\)= \(1-1\)

<=> \(-x^2+4x=0\)

<=>\(4x=x^2\)

<=> \(4=x\) ( TMĐKXĐ)

Vậy tập nghiệm của pt S={4}

c) \(\dfrac{2x+1}{3}-\dfrac{3x-2}{2}>\dfrac{1}{6}\)

<=> \(\dfrac{4x+2}{6}-\dfrac{9x-6}{6}>\dfrac{1}{6}\)

<=> \(\dfrac{4x+2-9x+6}{6}-\dfrac{1}{6}>0\)

<=> \(\dfrac{-5x+7}{6}>0\)

Mà 6>0 . Nên \(-5x+7>0\)

Ta có \(-5x+7>0\)

<=> \(-5x>-7\)

<=> \(x< \dfrac{7}{5}\)

Vậy tập nghiệm của bất phương trình S={x thuộc R| \(x< \dfrac{7}{5}\)}

12 tháng 5 2017

1)2.(3x-1)-3x=10

6x-2-3x =10

6x-3x =10+2

3x =12

x =4

Vậy S=4

2) \(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

Đkxđ: \(x\ne0\)\(x\ne-1\)

MTC;x(x+1)

\(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\)

\(\Leftrightarrow\)\(\dfrac{\left(x+1\right)\left(x+1\right)+x\left(x+1\right)}{x\left(x+1\right)}=\dfrac{x\left(3x-1\right)+1}{x\left(x+1\right)}\)

\(\Leftrightarrow\)(x+1) (x+1)+x(x+1) = x (3x-1)+1

\(\Leftrightarrow\)x2+x+x+1+x2+x =3x2-x+1

\(\Leftrightarrow\)x2+x+x+1+x2+x-3x2+x-1=0

\(\Leftrightarrow\)-x24x=0

\(\Leftrightarrow\)4x-x2=0

\(\Leftrightarrow\)x(4-x)=0

\(\Leftrightarrow\)x=0 hoặc 4-x=0

\(\Leftrightarrow\)x=0 hoặc x =4

3)\(\dfrac{2x+1}{3}-\dfrac{3x-2}{2}>\dfrac{1}{6}\)

\(\Leftrightarrow\)\(\dfrac{2x+1}{3}6-\dfrac{3x-2}{2}6>\dfrac{1}{6}\)6

\(\Leftrightarrow\)2(2x+1)-3(3x-2)>1

\(\Leftrightarrow\)4x+2-9x+6>1

\(\Leftrightarrow\)4x-9x>1-2-6

\(\Leftrightarrow\)-5x>-7

\(\Leftrightarrow\)-5x.\(\dfrac{1}{-5}>-7.\dfrac{1}{-5}\)

\(\Leftrightarrow x>\dfrac{7}{5}\)

a: \(\Leftrightarrow5x-2+\left(2x-1\right)\left(1-x\right)=2-2x-2x^2-2x+6\)

\(\Leftrightarrow5x-2+2x-2x^2-1+x=-2x^2-4x+8\)

=>8x-3=-4x+8

=>-4x=11

hay x=-11/4

b: \(\Leftrightarrow\left(-2x+5\right)\left(3x-1\right)+3\left(x^2-1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+2x+15x-5+3x^2-3=x-3x^2+2-6x\)

\(\Leftrightarrow17x-8=-5x+2\)

=>22x=10

hay x=5/11

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

18 tháng 4 2017

1.

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\left(ĐKXĐ:x\ne1\right)\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\ \Leftrightarrow21x-9=2x-2\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\dfrac{7}{19}\left(TMĐK\right)\)

2.

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\left(ĐKXĐ:x\ne-\dfrac{2}{3};x\ne\dfrac{1}{3}\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\\ \Leftrightarrow-8x+1=-11x-14\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\left(TMĐK\right)\)

3.

\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ \Leftrightarrow\left(\dfrac{1-x}{x+1}+3\right)\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{1-x+3\left(x+1\right)}{x+1}.\left(x+1\right)=2x+3\\ \Leftrightarrow\dfrac{4+2x}{x+1}\left(x+1\right)=2x+3\\ \Leftrightarrow4+2x=2x+3\\ \Leftrightarrow4=3\)

Vô nghiệm.

30 tháng 4 2018

4)a)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)(1)

ĐKXĐ:\(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)

(1)\(\Rightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\)

\(\Leftrightarrow x^2+10x+25-\left(x^2-10x+25\right)=20\)

\(\Leftrightarrow x^2+10x+25-x^2+10x-25=20\)

\(\Leftrightarrow x^2-x^2+10x+10x=-25+25=20\)

\(\Leftrightarrow20x=20\)

\(\Leftrightarrow x=1\left(nh\text{ậ}n\right)\)

S=\(\left\{1\right\}\)

30 tháng 4 2018

mấy bài còn lại dễ ẹt cứ bình tĩnh làm là ok

12 tháng 4 2018

a. 3x-1=x-5 <=> 2x=-4 <=> x=-2

Vậy tập no của phương trình là S={-2}

b.\(\dfrac{2x-1}{3}\)+\(\dfrac{3x-5}{4}\)=\(\dfrac{x-1}{5}\)

<=>40x-20+45x-75=12x-12

<=>73x=83 <=> x= \(\dfrac{83}{73}\)

Vậy tập no của phương trình là S={\(\dfrac{83}{73}\)}

c.(2x-6)(x+20)=0

<=> 2x-6=0 hoặc x+20=0

1) 2x-6=0 <=> x= 3

2) x+20=0 <=> x=-20

Vậy tập no của phương trình là S={-20 ; 3}

d. \(\dfrac{x-3}{x+3}\)+\(\dfrac{x+3}{x-3}\)=\(\dfrac{2x\left(x+1\right)}{x^2-9}\)

ĐKXĐ: x ≠ 3 và x ≠ -3

Ta có \(\dfrac{x-3}{x+3}\)+\(\dfrac{x+3}{x-3}\)=\(\dfrac{2x\left(x+1\right)}{x^2-9}\)

<=> (x-3)2 + (x+3)2 = 2x2+2x

<=> x2 -6x +9 +x2 +6x +9=2x2+2x

<=> 2x=18 <=> x=9

Vậy tập no của phương trình là S={9}

a: \(\Leftrightarrow1-x+3x+3=2x+3\)

=>2x+4=2x+3(vô lý)

b: \(\Leftrightarrow\left(x+2\right)^2-2x+3=x^2+10\)

\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)

=>4x+7=10

hay x=3/4

d: \(\Leftrightarrow\left(-2x+5\right)\left(3x-1\right)+3\left(x-1\right)\left(x+1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+2x+15x-5+3\left(x^2-1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+17x-5+3x^2-3=x-3x^2+2-6x\)

\(\Leftrightarrow-3x^2+17x-8=-3x^2-5x+2\)

=>22x=10

hay x=5/11

7 tháng 5 2018

3.

a) \(2x+5=20-3x\)

\(\Leftrightarrow2x+3x=20-5\)

\(\Leftrightarrow5x=15\)

\(\Leftrightarrow x=3\)

Vậy \(S=\left\{3\right\}\)

b) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[\left(2x-1\right)+\left(x+3\right)\right]\left[\left(2x-1\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{2}{3};4\right\}\)

c) \(\dfrac{5x-4}{2}=\dfrac{16x+1}{7}\)

\(\Leftrightarrow\left(5x-4\right)7=\left(16x+1\right)2\)

\(\Leftrightarrow35x-28=32x+2\)

\(\Leftrightarrow35x-32x=2+28\)

\(\Leftrightarrow2x=30\)

\(\Leftrightarrow x=15\)

Vậy \(S=\left\{15\right\}\)

d) \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Rightarrow\left(2x+1\right)12-\left(x-2\right)18=\left(3-2x\right)24-72x\)

\(\Leftrightarrow24x+12-18x+36=72-48x-72x\)

\(\Leftrightarrow6x+48=72-120x\)

\(\Leftrightarrow6x+120x=72-48\)

\(\Leftrightarrow126x=24\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

Vậy \(S=\left\{\dfrac{4}{21}\right\}\)