K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

(x^2+y^2)^2=225

x^4+2x^2y^2+y^4=225

x^4+2(xy)^2+y^4=225

x^4+2.6^2+y^4=225

x^4+y^4=153

21 tháng 11 2016

x4+y4=x4+2x2y2+y4-2(xy)2

=(x2+y2)2-2(xy)2

=152-2.62

=225-72=153

25 tháng 12 2016

Ta có: ( x4 + y4 ) = ( x2 + y2 )2 - 2 . x2 . y2

          = ( x2 + y2 )2 - 2 . xy . xy

          = 152 - 2 . 6 . 6

          = 225 - 72

          = 153

13 tháng 2 2017

1, \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=15^2-2.6^2=153\)

2, chú ý: \(n^2-\left(n+1\right)^2=-\left(2n+1\right)\)

\(M=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)+2017^2\)

\(=-3-7-11-...-4031+2017^2\)

\(=-1008.4034+2017^2=2017^2-2017.2016=\)\(2017\left(2017-2016\right)=2017\)

12 tháng 2 2017

Từ x2+y2= 15 và xy=6 ta có hệ pt

\(\hept{\begin{cases}^{x^2+y^2=15}\\x=\frac{6}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\frac{6}{y}\right)^2+y^2=15\Leftrightarrow36+y^4-15y^2=0\left(1\right)\\x=\frac{6}{y}\end{cases}}\)

giải pt (1)\(y^4-15y^2+36=y^4-3y^2-12y^2+36=y^2\left(y^2-3\right)-12\left(y^2-3\right)\)

tiếp \(\left(y^2-3\right)\left(y^2-12\right)=0\Leftrightarrow\orbr{\begin{cases}y^2=3\Rightarrow x^2=\frac{36}{3}=12\\y^2=12\Rightarrow x^2=\frac{36}{12}=3\end{cases}}\)

Không mất tính tổng quát nên x4+y4=(x2)2+(y2)2=122+32=153

4 tháng 10 2017

~ Bài 1:

Ta có: 1+2+...+232=\(\frac{\left(232+1\right)232}{2}\)=27028

Mà   :  1+2+...+232=2n-1

Nên     2n-1           =27028

           2n              =27029

             n              =13514,5

Vậy        n              =13514,5

~ Bài 2:

Giả sử: \(x^4+y^4=z\)        (1)

  Có:  xy=6

    => 2xy=12

Do đó: 2xyxy=12.6

      \(2x^2y^2\)=72             (2)

     Cộng (1),(2) vế theo vế:

   \(x^4+2x^2y^2+y^4=72+z\)

            \(\left(x^2+y^2\right)^2=72+z\)  

                           \(15^2=72+z\)                   

                            225   =72+z

      =>                   z      =153

            Vậy \(x^4+y^4=153\)   

3 tháng 1 2017

(x^2+y^2)^2=x^4+y^4+2(xy)^2=(x^4+y^4)+2.6^2=15^2=>x^4+y^4=15^2-2.36=36(25-2.4)=36.17

26 tháng 7 2020

Xài trò này chắc Oke :))

a)

Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p

\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)

\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)

\(=1267\)

b)

\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)

Ta tính \(x^5+y^5\) theo S và P

Dễ có:

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)

\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)

\(=S^5-5S^3P+2SP^2-S^2P\)

Chắc không nhầm lẫn gì ở việc tính toán =)))

14 tháng 8 2016

1/ B = (x+y)((x+y)- 3xy)+(x+y)- 2xy = 2 - 5xy = 2 - 5x(1-x)=5x- 5x + 2 = (x√5 - √5 /2)+3/4 >= 3/4 

Đạt GTNN là 3/4 khi x=y=1/2

2/ P = xy = x(6-x)=-x+6x = 9 - (x-3)2 <=9 

GTLN là 9 khi x=y=3