Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=xy(x+y) - (x+y) = (x+y) (xy-1) = (-5+2) (-5.2 -1) =-3 . -11 = 33
b) B= xy (y-x)+2(x-y) =xy (y-x) - 2(y-x) =(y-x) (xy -2)= (-1/3 - -1/2) ( -1/2 . -1/3 -- 2)= 1/6 . -11/6 =-11/ 36
a) x + y = 6 và xy = 8 => x = 2; y = 4
22 + 42 = 4 + 16 = 20
a) x^2+y^2= (x+y)^2-2xy
=36-2.8=20
b)x^3-y^3=(x-y)^3+3xy.(x-y)
=323+3.8.7=511
a) \(x^2+y^2=x^2+2xy+y^2-2xy\)
\(=\left(x+y\right)^2-2xy=a^2-2b\)
b) \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(=a\left(x^2+2xy+y^2-xy\right)\)
\(=a\left[\left(x+y\right)^2-xy\right]=a\left(a^2-b\right)=a^3-ab\)
a)P=5x(x2-3)+x2(7-5x)-7x2
=5x3-15x+7x2-5x3-7x2
=15x
thay x=5 vào P=15x ta được
15.5=75
b)Q=x(x-y)+y(x-y)
=x2-xy+xy-y2
=x2-y2
Thay x=1,5 ; y=10 vào Q=x2-y2 ta được :
1,52-102=\(\frac{-391}{4}\)
P = ( xy + 1 ) ( x2y2 - xyt + 1 )
= x3y3 + 1
= \(\left(5.\frac{3}{5}\right)^3+1\)
= \(27+1\)
= 28
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
Xài trò này chắc Oke :))
a)
Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p
\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)
\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)
\(=1267\)
b)
\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)
Ta tính \(x^5+y^5\) theo S và P
Dễ có:
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)
\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)
\(=S^5-5S^3P+2SP^2-S^2P\)
Chắc không nhầm lẫn gì ở việc tính toán =)))