Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^4+4x^2-2\ge-2\forall x\)
Dấu '=' xảy ra khi x=0
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^4+1\geq 4x^2\)
\(x^2+\frac{1}{4x^2}\geq 1\)
Cộng 2 BĐT trên theo vế và thu gọn ta có:
\(4x^4-3x^2+\frac{1}{4x^2}\geq 0\)
\(\Rightarrow P=4x^4-3x^2+\frac{1}{4x^2}+2017\geq 2017\)
Vậy $P_{\min}=2017$. Giá trị này đạt được khi $x=\pm \frac{1}{\sqrt{2}}$
\(A=\dfrac{1}{-x^2+2x-2}\)
A min \(\Leftrightarrow\dfrac{1}{A}\)max
ta có \(\dfrac{1}{A}=-x^2+2x-2=-\left(x^2-2x+2\right)=-\left(x-1\right)^2-1\le-1\)
\(\dfrac{1}{A}\)max= -1 tại x=1
=> A min = -1 tại x=1
\(B=\dfrac{2}{-4x^2+8x-5}\) ( phải là -4x2 nha bn)
B min \(\Leftrightarrow\dfrac{1}{B}\) max
ta có \(\dfrac{1}{B}=\dfrac{-4x^2+8x-5}{2}=\dfrac{-\left(4x^2-8x+5\right)}{2}=\dfrac{-\left(2x-4\right)^2+11}{2}=\dfrac{\left(-2x-4\right)^2}{2}+\dfrac{11}{2}\le\dfrac{11}{2}\)
\(\dfrac{1}{B}\)max=\(\dfrac{11}{2}\) tại x=2
\(\Rightarrow B\) min = \(\dfrac{1}{\dfrac{11}{2}}=\dfrac{2}{11}\) tại x=2
\(A=\dfrac{3}{2x^2+2x+3}=\dfrac{3}{2\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{5}{2}}=\dfrac{3}{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}\)
A max \(\Leftrightarrow\dfrac{1}{A}\) min
\(\Leftrightarrow\dfrac{2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{\dfrac{5}{2}}{3}=\dfrac{2\left(x+\dfrac{1}{2}\right)^2}{3}+\dfrac{5}{6}\ge\dfrac{5}{6}\)
\(\dfrac{1}{A}\) min = \(\dfrac{5}{6}\)tại x= \(-\dfrac{1}{2}\)
\(\Rightarrow A\)max = \(\dfrac{6}{5}\) tại x= \(-\dfrac{1}{2}\)
B\(=\dfrac{5}{3x^2+4x+15}=\dfrac{5}{3.\left(x^2+\dfrac{4}{3}x+5\right)}=\dfrac{5}{3\left(x^2+2.x.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{41}{9}\right)}=\dfrac{5}{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}\)
B max \(\Leftrightarrow\dfrac{1}{B}\) min
\(\Leftrightarrow\dfrac{3\left(x+\dfrac{2}{3}\right)^2+\dfrac{41}{3}}{5}=\dfrac{3\left(x+\dfrac{2}{3}\right)^2}{5}+\dfrac{41}{15}\ge\dfrac{41}{15}\)
\(\dfrac{1}{B}\) min = \(\dfrac{41}{15}\) tại x=\(-\dfrac{2}{3}\)
=> \(B\) max = \(\dfrac{15}{41}\) tại x=\(-\dfrac{2}{3}\)
Đây chỉ là gợi ý !! bn pải tự lí luận nha
tik
a: \(A=3\left(x^2-\dfrac{4}{3}x+\dfrac{7}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{17}{9}\right)\)
\(=3\left(x-\dfrac{2}{3}\right)^2+\dfrac{17}{3}>=\dfrac{17}{3}\)
Dấu '=' xảy ra khi x=2/3
b: \(=9x^2-6x+1+4x^2-20x+25-4\)
\(=13x^2-26x+22\)
\(=13\left(x^2-2x+\dfrac{22}{13}\right)\)
\(=13\left(x^2-2x+1+\dfrac{9}{13}\right)\)
\(=13\left(x-1\right)^2+9>=19\)
Dấu '=' xảy ra khi x=1
2014/(2x^2-4x+2+2012)
=2014/2(x-1)^2+2012 bé hơn hoặc bằng 2014/2012
suy ra GTLN của biểu thức là 2014/2012 tại x=1
\(3x^4\ge0;4x^2\ge0\Rightarrow3x^4+4x^2\ge0\Rightarrow3x^4+4x^2-2\ge-2\)
GTNN là -2 <=> x = 0
\(A=3x^4+4x^2-2\ge0+0-2=-2\) vì x2\(\ge0\)
A min=- 2 khi x=0