K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(4x^4+1\geq 4x^2\)

\(x^2+\frac{1}{4x^2}\geq 1\)

Cộng 2 BĐT trên theo vế và thu gọn ta có:

\(4x^4-3x^2+\frac{1}{4x^2}\geq 0\)

\(\Rightarrow P=4x^4-3x^2+\frac{1}{4x^2}+2017\geq 2017\)

Vậy $P_{\min}=2017$. Giá trị này đạt được khi $x=\pm \frac{1}{\sqrt{2}}$

18 tháng 3 2018

Ta có:\(A=x^2-4x+\frac{1}{x^2-4x+4}+5\)\(=x^2-4x+4+\frac{1}{x^2-4x+4}+1\)

Áp dụng BĐT Cauchy ta có:\(A\ge2\sqrt{\left(x^2-4x+4\right).\frac{1}{x^2-4x+4}}+1=2+1=3\)

\(\Rightarrow GTNN\) của A là 3 đạt được khi \(x^2-4x+4=\frac{1}{x^2-4x+4}\Rightarrow\left(x-2\right)^4=1\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

18 tháng 3 2018

cảm ơn bạn

23 tháng 12 2016

ĐKXĐ: x2 khác 0=> x khác 0

A=(x2-4x+4+5x2)/(x2)

=[(x-2)2+5x2)/(x2)

=(x-2)2/(x2)+(5x2)/(x2)

=(x-2)2/(x2)+5

Vì B= (x-2)2/x2 >=0 => Bmin=0 =>x=2(t/m)

=>Amin=0+5=5 <=>x=2

vậy..................

23 tháng 12 2016

6x^2-4x+4=5x^2+x^2-4x-4

6x^2-4x+4/x^2=5x^2+x^2-4x+4/x^2=5x^2/x^2 +(x-2)^2/x^2= 5+ (x-2)^2/x^2

do (x-2)^2/x^2 >= 0 với mọi x

nên 5+ (x-2)^2/x^2 >= 5

GTNN là 5 khi (x-2)^2/x^2 = 0 rồi cậu giải ra tìm x ý

20 tháng 4 2019

tính mẫu số trước nhé

đặt dấu - ra ngoài

= -[(4x^2+4x)-3]

đặt 4 ra nữa nhé

= -[4(x^2+x)-3)]

phân tích (x^2+x) theo công thức (a+b)^2

= -[4(x+1/2)^2-13/4)] 

bỏ dấu trừ ra 

= -4(x+1/2)^2 + 13/4

nhận xét :

(x+1/2)^2> hoặc =0

=> -4(x+1/2)^2 < hoặc = 0

=> -4(x+1/2)^2 -+13/4 < hoặc = 13/4

=> A > hoặc = 3/(13/4) = 12/13 ( vì đây là mẫu số nên chia sẽ đổi dấu lại)

=> Min A = 12/13 khi x = -1/2

3 tháng 7 2020

Bài làm:

+Tìm Min:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)

Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(Min=-1\Leftrightarrow x=-2\)

+Tìm Max:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)

3 tháng 7 2020

1 cách làm khác :3

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)

\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)

Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)

Điểm rơi khó chết luôn á :(

25 tháng 1 2020

jack tuổi lồn

25 tháng 1 2020

Ta có: \(A=\frac{x^2-4x+1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}=\left(\frac{1}{x}-2\right)^2-3\ge3\left(\forall x\right)\)

\(\Rightarrow Min_A=-3\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

Để \(\frac{3x-2}{x^2-9}=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

13 tháng 8 2016

Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)

\(3x=2\)

\(x=\frac{2}{3}\)

20 tháng 11 2017

em chịu ạ! Tịt rùi!