K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

em ms hok lớp 1

7 tháng 7 2017

\(\sqrt{\frac{1-x}{x}}=\frac{2x+x^2}{1+x^2}\)

\(\Leftrightarrow\sqrt{\frac{1-x}{x}}-1=\frac{2x+x^2}{1+x^2}-1\)

\(\Leftrightarrow\frac{-\left(2x-1\right)}{\sqrt{\frac{1-x}{x}}+1}-\frac{2x-1}{1+x^2}=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{-1}{\sqrt{\frac{1-x}{x}}+1}-\frac{1}{1+x^2}\right)=0\)

Dễ thấy: \(\frac{-1}{\sqrt{\frac{1-x}{x}}+1}-\frac{1}{1+x^2}< 0\)

\(\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

7 tháng 7 2015

\(\left(\frac{4}{27}+\frac{4}{165}+\frac{4}{285}\right):\left(\frac{5}{84}+\frac{3}{180}+\frac{4}{285}\right)=\frac{4}{27}+\frac{4}{165}+\frac{4}{285}:\frac{5}{84}+\frac{3}{180}+\frac{4}{285}=\frac{1052}{5643}:\frac{12}{133}=\frac{1841}{891}\)

1 tháng 4 2020

\(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}ĐKXĐ:x\ne-1;-3\)

\(\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x+1\right)\left(x-1\right)\)

\(4x^2+12x+18=-2x-5x^2+5\)

\(4x^2+12x+18+2x+5x^2-5=0\)

\(9x^2-14x+13=0\)

=> vô nghiệm

1 tháng 6 2016

a)Đặt \(\frac{1}{x-1}=t;\frac{1}{y-1}=m\)

Ta có: \(\frac{5}{x-1}+\frac{1}{y-1}=10=5.\frac{1}{x-1}+\frac{1}{y-1}=10=5t+m=10\)

\(\frac{1}{x-1}+\frac{3}{y-1}=t+3.\frac{1}{y-1}=t+3m=18\)

Từ đây ta có HPT \(\hept{\begin{cases}5t+m=10\left(1\right)\\t+3m=18\left(2\right)\end{cases}}\)

\(5t+m=10\Rightarrow5t=10-m\Rightarrow t=\frac{10-m}{5}\),thay vào (2) ta có:

\(\frac{10-m}{5}+3m=18\Rightarrow\frac{10-m+15m}{5}=18\Rightarrow\frac{10+14m}{5}=18\)

=>10+14m=18.5=90=>14m=90-10=>14m=80=>m=\(\frac{40}{7}\)

Thay m=40/7 vào (1)=>t=6/7

\(\frac{1}{x-1}=t\Rightarrow\frac{1}{x-1}=\frac{6}{7}\Rightarrow\left(x-1\right).6=7\Rightarrow6x-6=7\Rightarrow x=\frac{13}{6}\)

\(\frac{1}{y-1}=m\Rightarrow\frac{1}{y-1}=\frac{40}{7}\Rightarrow\left(y-1\right).40=7\Rightarrow40y-40=7\Rightarrow y=\frac{47}{40}\)

Vậy x=13/6;y=47/40 thì thỏa mãn HPT

mk hết hè lên lp 8 nên cũng không chắc 100% nhé

1 tháng 6 2016

b/ Đặt \(\frac{1}{x+2y}=a\) ; \(\frac{1}{x-2y}=b\) , ta có hệ phương trình: \(\hept{\begin{cases}4a-b=1\\20a+3b=1\end{cases}\Rightarrow\hept{\begin{cases}b=4a-1\\20a+3\left(4a-1\right)=1\end{cases}\Rightarrow}\hept{\begin{cases}b=4a-1\\20a+12a-3=1\end{cases}}\Rightarrow\hept{\begin{cases}b=4a-1\\a=\frac{1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}b=-\frac{1}{2}\\a=\frac{1}{8}\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}\Rightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}\Rightarrow}\hept{\begin{cases}x=-2+2y\\-2+2y+2y=8\end{cases}\Rightarrow}\hept{\begin{cases}x=-2+2y\\y=\frac{5}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}}\)

           Vậy x = 3 , y = 5/2 

c/ Đặt \(\frac{1}{x-3}=a\) ; \(\frac{1}{y+2}=b\) , ta có hệ phương trình: 

     \(\hept{\begin{cases}12a-5b=63\\8a+15b=-13\end{cases}\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\8a+15\left(\frac{12a-63}{5}\right)=-13\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\8a+\frac{180a-945}{5}=-13\end{cases}}\)

       \(\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\a=4\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\a=4\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{y+2}=-3\\\frac{1}{x-3}=4\end{cases}\Rightarrow\hept{\begin{cases}-3y-6=1\\4x-12=1\end{cases}}\Rightarrow\hept{\begin{cases}y=-\frac{7}{3}\\x=\frac{13}{4}\end{cases}}}\)

             Vậy x = 13/4 , y = -7/3

d/ Đặt \(\frac{1}{x+y-3}=a\) ; \(\frac{1}{x-y+1}=b\) , ta có hệ phương trình:

         \(\hept{\begin{cases}5a-2b=8\\3a+b=1,5\end{cases}\Rightarrow\hept{\begin{cases}5a-2\left(\frac{3}{2}-3a\right)=8\\b=\frac{3}{2}-3a\end{cases}\Rightarrow}\hept{\begin{cases}5a-3+6a=8\\b=\frac{3}{2}-3a\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-\frac{3}{2}\end{cases}}}\)

         \(\Rightarrow\hept{\begin{cases}\frac{1}{x+y-3}=1\\\frac{1}{x-y+1}=-\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}x+y-3=0\\-3x+3y-3=2\end{cases}\Rightarrow}\hept{\begin{cases}x+y=3\\-3x+3y=5\end{cases}}}\)

          \(\Rightarrow\hept{\begin{cases}x=3-y\\-3\left(3-y\right)+3y=5\end{cases}\Rightarrow\hept{\begin{cases}x=3-y\\-9+3y+3y=5\end{cases}\Rightarrow}\hept{\begin{cases}x=3-y\\y=\frac{7}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{7}{3}\end{cases}}}\)

                          Vậy x = 2/3 ; y = 7/3