\(\frac{1}{\sqrt{x-1}+\sqrt{x-2}}+\frac{1}{\sqrt{x-2}+\sqrt{x-3}}+...+\frac{1}{\sqrt{x-9...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

1.

Xét riêng 2 căn lớn đầu tiên

Bình phương, thu gọn được căn(12-8 căn 2)

Giờ kết hợp kết quả này với căn lớn còn lại

Tiếp tục bình phương, thu gọn là xong

24 tháng 9 2016

câu a tớ giải được rồi, các bn giải câu b giùm mk

23 tháng 11 2018

olm còn lỗi nên ko trình bày bth đc, bn tự viết lại nhá :)) 

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}=\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}\)

\(\frac{1}{\sqrt{x+1}+\sqrt{x}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\)

\(VT=\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}\)

\(VT=\sqrt{x+3}-\sqrt{x}=1\)

Dễ r -,- 

3 tháng 11 2018

em ms hok lớp 1