Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác DEI và tam giác FED ta có :
góc E chung
góc DIE = góc FDE (=90 độ)
=> tam giác DEI đồng dạng với tam giác FED (g.g )
=> DE/EF=EI/ED =>.DE2=EF.EI
a, Vì DH là đường cao (gt) \(\Rightarrow\widehat{DHF}=90^0\)
Xét \(\Delta DEF\)và \(\Delta HDF\)có
\(\widehat{F}\)chung
\(\widehat{EDF}=\widehat{DHF}\left(=90^0\right)\)
\(\Rightarrow\Delta DEF\infty\Delta HDF\left(g-g\right)\)
b, Xét \(\Delta DEF\)vuông tại D , DH là đường cao có
\(HD^2=HE.HF\)(Hệ thức lượng trong tam giác vuông )
c, Xét \(\Delta DEF\)vuông tại D có
\(EF^2=DE^2+DF^2\)(định lí Pytago)
\(25=DE^2+20^2\)
\(625=DE^2+400\)
\(DE^2=225\Rightarrow DE=15\left(cm\right)\)
Xét \(\Delta DEF\)vuông tại , DH là đường cao có
\(DE.DF=EF.DH\)(hệ thức lượng trong tam giác vuông )
\(\Leftrightarrow15.20=25.DH\)
\(\Leftrightarrow DH=\frac{15.20}{25}=12\left(cm\right)\)
d,Xét \(\Delta DEF\)vuông tại D, DH là đường cao có
\(DF^2=FH.FE\) (hệ thức lượng trong tam giác vuông ) (1)
Xét \(\Delta DBF\)vuông tại D , \(DM\perp BF\)có
\(DF^2=FM.FB\)(hệ thức lượng trong tam giác vuông ) (2)
Từ (1) và (2) \(\Rightarrow FH.FE=FM.FB\)
\(\Leftrightarrow\frac{FH}{FB}=\frac{FM}{FE}\)
Xét \(\Delta MHF\)và \(\Delta BEF\)có
\(\widehat{EFB}\)chung
\(\frac{FH}{FB}=\frac{FM}{FE}\left(cmt\right)\)
\(\Rightarrow\Delta MHF\infty\Delta BEF\left(c-g-c\right)\)
Nhớ k cho mình nha
A B C D E
a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)
\(BD\)chung
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b, Theo câu a, ta có :
\(\Delta ABD=\Delta EBD\left(cmt\right)\)
\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )
\(\Rightarrow\Delta ABE\)là tam giác cân
Lại có : \(\widehat{B}=60^o\)
\(\Rightarrow\Delta ABE\)là tam giác đều
c, Do : \(\Delta ABE\)đều
\(\Rightarrow AB=BE=5\left(cm\right)\)
Do : \(BD\)là phân giác của \(\widehat{B}\)
\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)
Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)
Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)
\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)
Xét : \(\Delta BDE\)và \(\Delta CDE\)có :
\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)
\(DE\)chung
\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)
\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)
\(\Rightarrow BE=CE=5\left(cm\right)\)
\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)
Vậy : \(BC=10\left(cm\right)\)
D E F I
Câu a) xét 2 tam giác IED và tam giác DEF
góc EID= góc EDFo=90 độ
góc DEF CHUNG
DO ĐÓ : TAM GIÁC IED ĐỒNG DẠNG VỚI TAM GIÁC DEF
CÂU B)
ÁP DỤNG ĐỊNH LÍ PYTAGO TRONG TAM GIÁC DEF CÓ
EF^2=DE^2+DF^2
=) EF^2= 3^2+4^2=25
=) EF= CĂN 25=5 CM
LẠI CÓ TAM GIÁC IED ĐỒNG DẠNG VỚI TAM GIÁc DEF(cm câu a)
=) ED/EF = ID/DF HAY 3/5 = ID/ 4
(=)ID= 3*4/5= 2,4 (CM
CÂU C)
TA CÓ : TAM GIÁC IED đồng dạng với tam giác DEF (CM CÂU A)
=) IE/DE = ED/EF
hay DE^2=IE*EF
cám ơn bạn nhiều nha