K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

12 cho ai giải đc

19 tháng 4 2019

 xét tam giác DEI và tam giác FED ta có :

góc E chung 

góc DIE = góc FDE (=90 độ)

=> tam giác DEI đồng dạng với tam giác FED (g.g ) 

=> DE/EF=EI/ED =>.DE2=EF.EI

19 tháng 4 2019

D E F I

Câu a) xét 2 tam giác IED và tam giác DEF

góc EID= góc EDFo=90 độ

góc DEF CHUNG

DO ĐÓ : TAM GIÁC IED ĐỒNG DẠNG VỚI TAM GIÁC DEF

CÂU B)

ÁP DỤNG ĐỊNH LÍ PYTAGO TRONG TAM GIÁC DEF CÓ

EF^2=DE^2+DF^2

=) EF^2= 3^2+4^2=25

=) EF= CĂN 25=5 CM

LẠI CÓ TAM GIÁC IED ĐỒNG DẠNG VỚI TAM GIÁc DEF(cm câu a)

=) ED/EF = ID/DF HAY 3/5 = ID/ 4

                                     (=)ID= 3*4/5= 2,4 (CM

CÂU C)

TA CÓ : TAM GIÁC IED đồng dạng với tam giác DEF (CM CÂU A)

=) IE/DE = ED/EF

hay DE^2=IE*EF

19 tháng 4 2019

cám ơn bạn nhiều nha

4 tháng 6 2020

a, Vì DH là đường cao (gt) \(\Rightarrow\widehat{DHF}=90^0\)

Xét \(\Delta DEF\)và \(\Delta HDF\)

\(\widehat{F}\)chung

\(\widehat{EDF}=\widehat{DHF}\left(=90^0\right)\)

\(\Rightarrow\Delta DEF\infty\Delta HDF\left(g-g\right)\)

b, Xét \(\Delta DEF\)vuông tại D , DH là đường cao có 

\(HD^2=HE.HF\)(Hệ thức lượng trong tam giác vuông )

c, Xét \(\Delta DEF\)vuông tại D có 

\(EF^2=DE^2+DF^2\)(định lí Pytago)

\(25=DE^2+20^2\)

\(625=DE^2+400\)

\(DE^2=225\Rightarrow DE=15\left(cm\right)\)

Xét \(\Delta DEF\)vuông tại , DH là đường cao có

\(DE.DF=EF.DH\)(hệ thức lượng trong tam giác vuông )

\(\Leftrightarrow15.20=25.DH\)

\(\Leftrightarrow DH=\frac{15.20}{25}=12\left(cm\right)\)

d,Xét \(\Delta DEF\)vuông tại D, DH là đường cao có

\(DF^2=FH.FE\) (hệ thức lượng trong tam giác vuông ) (1)

Xét \(\Delta DBF\)vuông tại D , \(DM\perp BF\)

\(DF^2=FM.FB\)(hệ thức lượng trong tam giác vuông ) (2)

Từ (1) và (2) \(\Rightarrow FH.FE=FM.FB\)

\(\Leftrightarrow\frac{FH}{FB}=\frac{FM}{FE}\)

Xét \(\Delta MHF\)và \(\Delta BEF\)có 

\(\widehat{EFB}\)chung 

\(\frac{FH}{FB}=\frac{FM}{FE}\left(cmt\right)\)

\(\Rightarrow\Delta MHF\infty\Delta BEF\left(c-g-c\right)\)

Nhớ k cho mình nha 

20 tháng 4 2019

A B C D K O F I E

27 tháng 3 2019

A B C D E

a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)

\(BD\)chung

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b, Theo câu a, ta có :

\(\Delta ABD=\Delta EBD\left(cmt\right)\)

\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )

\(\Rightarrow\Delta ABE\)là tam giác cân

Lại có : \(\widehat{B}=60^o\)

\(\Rightarrow\Delta ABE\)là tam giác đều 

c, Do : \(\Delta ABE\)đều 

\(\Rightarrow AB=BE=5\left(cm\right)\)

Do : \(BD\)là phân giác của \(\widehat{B}\)

\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)

Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)

Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)

\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)

Xét : \(\Delta BDE\)và \(\Delta CDE\)có : 

\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)

\(DE\)chung

\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)

\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)

\(\Rightarrow BE=CE=5\left(cm\right)\)

\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)

Vậy : \(BC=10\left(cm\right)\)