Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}AE||DC\\CD\perp BD\end{matrix}\right.\) \(\Rightarrow AE\perp BD\) \(\Rightarrow\Delta AIE\) vuông tại E
Tương tự ta có \(DF\perp AC\Rightarrow\Delta DIF\) vuông tại F
\(\Rightarrow\) Hai tam giác vuông AIE và DIF đồng dạng ( \(\widehat{AIE}=\widehat{DIF}\) đối đỉnh)
\(\Rightarrow\dfrac{IE}{IF}=\dfrac{IA}{ID}\) (1)
Mà \(\widehat{EIF}=\widehat{AID}\) (đối đỉnh)
(1); (2) \(\Rightarrow\Delta EIF\sim\Delta AID\) (c.g.c)
\(\Rightarrow\widehat{EFI}=\widehat{ADI}\) hay \(\widehat{EFI}=\widehat{ADB}\)
Lại có \(\widehat{ADB}=\widehat{ACB}\) theo chứng minh câu b
\(\Rightarrow\widehat{EFI}=\widehat{ACB}\Rightarrow EF||BC\) (hai góc đồng vị bằng nhau)
Điểm D là điểm nào em nhỉ?
AE//DC thì điểm E nằm ở đoạn thẳng nào? DF//AB thì điểm F nằm ở đoạn thẳng nào?
Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm. a) Chứng minh tam giác ABC vuông tại A. b) Vẽ tia phân giác BD (D thuộc AC). Vẽ tia phân giác BD (D thuộc AC), từ D vẽ DE vuông góc với BC (E thuộc BD). AD cắt AB tại F, ED cắt AB tại F. Chứng minh DA = DE và DF > DE Phần c
giúp mình câu c, thanks