K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(\Leftrightarrow x\left(x-2017\right)-\left(x-2017\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2017\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2017=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2017\end{cases}}}\)

Vậy.....

11 tháng 5 2018

\(x\left(x-2017\right)-x+2017=0\)

\(\Leftrightarrow x\left(x-2017\right)-\left(x-2017\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2017\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2017=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2017\end{cases}}\)

\(x^6-y^6\)

\(=\left(x^3\right)^2-\left(y^3\right)^2\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

19 tháng 7 2019

\(x^6-y^6\)

\(=\left(x^3\right)^2-\left(y^3\right)^2\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

17 tháng 7 2019

\(A=16-2x-x^2\)

\(A=-x^2-2.x.1-1+17\)

\(A=-\left(x^2+2.x.1+1\right)+17\)

\(A=-\left(x+1\right)^2+17\le17\)

Dấu = xảy ra khi : 

   \(x+1=0\Leftrightarrow x=-1\)

Vậy A max = 17 tại x = -1

17 tháng 7 2019

A=-(x^2+2x-16)

=-(x^2+2x+1-17)

=-(x+1)^2+17

vs mọi x, cs:

-(x+1)^2 > 0

=>-(x+1)^2+17 > 17

=> A > 7

dấu = xảy ra <=> (x+1)^2=0

                     <=>x+1=0<=>x=-1

vậy GTLN A=17 đạt đc khi x=-1

8 tháng 5 2017

hình như đề bài thiếu dữ kiện

8 tháng 5 2017

à đúng r EF=20cn

\(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{x}{2018}\)

\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x}{4070306}+\frac{2017x}{4070306}\)

\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x+2017x}{4070306}\)

\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-x}{4070306}\)

\(\Rightarrow\frac{2-x}{2016}-1+1=\frac{1-x}{4070306}+1\)

\(\Rightarrow\frac{2-x}{2016}=\frac{1-x+4070306}{4070306}\)

\(\Rightarrow\frac{2-x}{2016}=\frac{4070307-x}{4070306}\)

\(\Rightarrow4070306.\left(2-x\right)=2016.\left(4070307-x\right)\)

\(\Rightarrow8140612-4070306x=8205738912-2016x\)

\(\Rightarrow-4070306x+2016x=8205738912-8140612\)

\(\Rightarrow-4068290x=8197598300\)

\(\Rightarrow x=4,95\)

Vậy x=4,95

Chúc bn học tốt

7 tháng 4 2019

a) \(x^2-5x+6< 0\)

\(\Leftrightarrow x^2-2x-3x+6< 0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}}}\)

\(\Leftrightarrow2< x< 3\)

Vậy \(2< x< 3\)là các giá trị cần tìm của bất phương trình

b) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

\(\Leftrightarrow2x\left(3x-5\right)< 0\)(vì \(x^2+1>0\forall x\) )

\(\Leftrightarrow\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}}\)

\(\Leftrightarrow0< x< \frac{5}{3}\)

Vậy \(0< x< \frac{5}{3}\)là các giá trị cần tìm của bất phương trình

15 tháng 2 2020

\(\frac{x+19}{3}+\frac{x+13}{5}=\frac{x+7}{7}+\frac{x+1}{9}\)

\(=>\frac{x+19}{3}+3+\frac{x+13}{5}+3=\frac{x+7}{7}+3+\frac{x+1}{9}+3\)

\(=>\frac{x+28}{3}+\frac{x+28}{5}=\frac{x+28}{7}+\frac{x+28}{9}\)

\(=>\frac{x+28}{3}+\frac{x+28}{5}-\frac{x+28}{7}-\frac{x+28}{9}=0\)

\(=>\left(x+28\right)\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)=0\)

Do :\(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\ne0\)

\(=>x+28=0\)

\(=>x=-28\)

Vậy nghiệm của phương trình trên là : -28

15 tháng 2 2020

Thks nha

21 tháng 3 2019

\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)

\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)

\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)

\(ĐK:x\ge2016;y\ge2017;z\ge2018\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)

21 tháng 3 2019

nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:

\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)

\(\left(\sqrt{z-2018}-1\right)^2\)

= 0

19 tháng 2 2020

Ta có\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)

\(\Leftrightarrow\frac{x-2}{2016}+1+\frac{x-3}{2017}+1+\frac{x-4}{2018}=0\)

\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\) Vì \(\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)>0\)

\(\Rightarrow x+2014=0\)

\(\Rightarrow x=-2014\)