K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Đặt \(M=\frac{1}{4}+\frac{1}{16}+.....+\frac{1}{10000}\)

\(M=\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+......+\frac{1}{100.100}\)

\(=\frac{1}{2.2}\left(1+\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{50.50}\right)\)

\(< \frac{1}{2.2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{49.50}\right)\)

\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{4}.\left(1+1-\frac{1}{50}\right)< \frac{1}{4}.\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy \(M< \frac{1}{2}\)

26 tháng 3 2018

99/100

cho mk nhé

27 tháng 4 2018

\(Đ\text{ặt }S=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+....+\frac{1}{10000}\)

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(S=\frac{1}{2^2}\cdot\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2};\text{ }\frac{1}{3^2}< \frac{1}{2\cdot3};\text{ }...;\text{ }\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(\Rightarrow\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}\cdot2\)

\(\Rightarrow S< \frac{1}{2}\) (ĐPCM)

30 tháng 4 2018

Đặt \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+....+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{100^2}\)

\(\Rightarrow4A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\)

\(\Rightarrow4A< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(\Rightarrow4A=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow4A< 2-\frac{1}{50}< 2\)

\(\Rightarrow4A< 2\Rightarrow A< \frac{2}{4}=\frac{1}{2}\)

=>a<1/2

26 tháng 3 2020

Đặt: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\)

Ta có: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)

\(\Rightarrow A< \frac{1}{4}.\frac{99}{50}\)

\(\Rightarrow A< \frac{99}{200}< \frac{1}{2}\)

Vậy: \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\left(đpcm\right)\)

26 tháng 3 2020

cam ơn ban

8 tháng 2 2020

Đặt    \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{4}+\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=\frac{1}{4}+\frac{1}{4}\cdot B\)

Ta có     \(\frac{1}{2^2}< \frac{1}{1\cdot2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)

\(...\)

\(\frac{1}{50^2}< \frac{1}{49\cdot50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{4}\cdot1=\frac{1}{2}\)

20 tháng 3 2016

Đặt S=1/4+1/16+1/36+...+1/10000

        S= 1/4x(1+1/4+1/9+...+1/2500)

        S= 1/4x(1+1/2x2+1/3x3+...+1/50x50)

S< 1/4x(1+1/1x2+1/2x3+...1/49x50)

S< 1/4x(1+1-1/2+1/2-1/3+....+1/49-1/50)

S< 1/4x(1+1-1/50)

S< 1/4x(2-1/50)<2/4(2/4=1/2)

S< 1/2

20 tháng 3 2016

S=\(\frac{1}{4}\)(1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}+...+\frac{1}{50^2}\)

S<\(\frac{1}{4}\)(1+\(\frac{1}{2.1}\)+\(\frac{1}{3.2}+...+\frac{1}{50.49}\))

S<\(\frac{1}{4}\)(1+1−\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\))

S<\(\frac{1}{4}\)(2−\(\frac{1}{50}\))<\(\frac{2}{4}\)=\(\frac{1}{2}\)(đpcm)

11 tháng 3 2018

Đặt S=1/4+1/16+1/36+...+1/10000

        S= 1/4x(1+1/4+1/9+...+1/2500)

        S= 1/4x(1+1/2x2+1/3x3+...+1/50x50)

S< 1/4x(1+1/1x2+1/2x3+...1/49x50)

S< 1/4x(1+1-1/2+1/2-1/3+....+1/49-1/50)

S< 1/4x(1+1-1/50)

S< 1/4x(2-1/50)<2/4(2/4=1/2)

S< 1/2

11 tháng 3 2018

Ta có: \(\frac{1}{4}< \frac{1}{2}\)

\(\frac{1}{16}< \frac{1}{2}\)

 ... . . . 

\(\frac{1}{10000}< \frac{1}{2}\)

\(\frac{1}{10000}+\frac{1}{10000}+...+\frac{1}{10000}< \frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(*) (n phân số \(\frac{1}{10000}\) ; n phân số \(\frac{1}{2}\)

Từ đó suy ra \(\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{1000}< \frac{1}{2}\left(đpcm\right)\)

31 tháng 1 2016

S=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81=1-1/81=1/81

 

31 tháng 1 2016

80/81 là đúng

14 tháng 5 2017

a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...

b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

Thay B vào A ta được:

\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy....

14 tháng 5 2017

c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)

d, chắc là đề sai

e, giống câu a