K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

\(Đ\text{ặt }S=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+....+\frac{1}{10000}\)

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(S=\frac{1}{2^2}\cdot\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2};\text{ }\frac{1}{3^2}< \frac{1}{2\cdot3};\text{ }...;\text{ }\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(\Rightarrow\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}\cdot2\)

\(\Rightarrow S< \frac{1}{2}\) (ĐPCM)

30 tháng 4 2018

Đặt \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+....+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{100^2}\)

\(\Rightarrow4A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\)

\(\Rightarrow4A< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(\Rightarrow4A=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow4A< 2-\frac{1}{50}< 2\)

\(\Rightarrow4A< 2\Rightarrow A< \frac{2}{4}=\frac{1}{2}\)

=>a<1/2

14 tháng 5 2017

a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...

b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

Thay B vào A ta được:

\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy....

14 tháng 5 2017

c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)

d, chắc là đề sai

e, giống câu a

25 tháng 5 2020

b,A= \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

\(=(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{40})+(\dfrac{1}{41}+...+1...\)
\(=(\dfrac{20}{20.21}+\dfrac{21}{21.22}+...+\dfrac{39}{39.40})+(40/...\)
\(20(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...\dfrac{1}{39.40})+40(\dfrac{1}{40}...\)
\(20(\dfrac{1}{20}-\dfrac{1}{40})+40(\dfrac{1}{40}-\dfrac{1}{60})>\dfrac{11}{15}\)
Lại có \(A<40(\dfrac{1}{20.21}+...\dfrac{1}{39.40})+60(\dfrac{1}{40.41}+...+...\)
\(=40(\dfrac{1}{20}-\dfrac{1}{40})+60(\dfrac{1}{40}-\dfrac{1}{60})<\dfrac{3}{2}\)

=> \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)

25 tháng 5 2020

a,\( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\)

= \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+...+ \dfrac{1}{196} < \dfrac{1}{2^2-1}+ \dfrac{1}{4^2-1}+ \dfrac{1}{6^2-1}+...+ \dfrac{1}{14^2-1}\)

= \( \dfrac{1}{1.3}+ \dfrac{1}{3.5}+ \dfrac{1}{5.7}+...+ \dfrac{1}{13.15}\)

= \( \dfrac{1}{2}(1- \dfrac{1}{3}+ \dfrac{1}{3}- \dfrac{1}{5}+ \dfrac{1}{5}- \dfrac{1}{7}+ \dfrac{1}{7}-...- \dfrac{1}{13}+ \dfrac{1}{13}- \dfrac{1}{15})\)

= \( \dfrac{1}{2}(1- \dfrac{1}{15})< \dfrac{1}{2}\)

Vậy \( \dfrac{1}{4}+ \dfrac{1}{16}+ \dfrac{1}{36}+ \dfrac{1}{64}+ \dfrac{1}{100}+ \dfrac{1}{144}+ \dfrac{1}{196}\) \(<\dfrac{1}{2} \)

8 tháng 5 2019

A=\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\)=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

=>A<\(\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\)

=>A<\(\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{12}-\frac{1}{14}\right)\)\(:2\)=\(\left(\frac{1}{2}-\frac{1}{14}\right):2\)<\(\frac{1}{2}\)

=>A<\(\frac{1}{2}\)

25 tháng 4 2019

kho lm giup minh voi

 

Bạn tham khảo nhé 

A=14 +116 +136 +164 +1100 +1144 +1196 =122 +142 +162 +182 +1102 +1122 +1142 

2A=222 +242 +262 +282 +2102 +2122 +2142 

2A<12 +22.4 +24.6 +26.8 +28.10 +210.12 +212.14 

2A<12 +12 14 +14 16 +16 18 +18 110 +110 112 +112 114 

2A<12 +12 114 

2A<1114 

2A<1314 

A<1328 <1428 =12  ( đpcm ) 

Vậy A<12 

Chúc bạn học tốt ~

9 tháng 8 2016

1/4 = 1/(2*2) < 1/(1*2) = 1/2 - 1/4 
tương tự ta có 
1/16 < 1/(2*4) = 1/4 - 1/8 
1/36 < 1/(4*6) = 1/8 - 1/12 
1/64 < 1/(6*8) = 1/12 - 1/16 
1/100 < 1/(8*10) = 1/16 - 1/20 
1/144 < 1/(10*12) = 1/20 - 1/24 
1/196 < 1/(12* 14) = 1/24 - 1/28 
cộng hết lại 
=> 1/4 + 1/16 + ......+ 1/100 + 1/144 + 1/196 < 1/2 - 1/28 < 1/2 => đpcm

13 tháng 8 2016

ta có 
1/4 = 1/(2*2) < 1/(1*2) = 1/2 - 1/4 
tương tự ta có 
1/16 < 1/(2*4) = 1/4 - 1/8 
1/36 < 1/(4*6) = 1/8 - 1/12 
1/64 < 1/(6*8) = 1/12 - 1/16 
1/100 < 1/(8*10) = 1/16 - 1/20 
1/144 < 1/(10*12) = 1/20 - 1/24 
1/196 < 1/(12* 14) = 1/24 - 1/28 
cộng hết lại 
=> 1/4 + 1/16 + ......+ 1/100 + 1/144 + 1/196 < 1/2 - 1/28 < 1/2 => đpcm
Tick đúng nha bạn

 

12 tháng 3 2015

b)Tương tự câu a) nha bạn nhưng phải đổi là B=1/4+1/16+.....+1/196=1/2.2+1/4.4+.......+1/14.14

làm mấy bước tương tự câu a) cho đến khi ra B<1-\(\frac{1}{14}\)=\(\frac{13}{14}\)>\(\frac{7}{14}\)=\(\frac{1}{2}\)

        Bạn nến xem lại đề bài phần b) : B phải lớn hơn 1/2 chứ