Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/22+1/32+...+1/92
Ta có:1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10
⇒A>1/2.3+1/3.4+...+1/9.10
A>1/2-1/3+1/3-1/4+...+1/9-1/10
A>1/2-1/10
A>2/5(đpcm)
a) 3/7 + 4/9 + 4/7 + 5/9
= ( 3/7 + 4/7 ) + ( 4/9 + 5/9 )
= 7/7 + 9/9
= 1 + 1
= 2
b)1/5 + 4/10 + 9/15 + 16/20 + 25/25 + 36/30 + 49/35 + 64/40 + 81/45
= 1/5 + 2/5 + 3/5 + 4/5 + 5/5 + 6/5 + 7/5 + 8/5 + 9/5
= ( 1/5 + 9/5 ) + ( 2/5 + 8/5 ) + (7/5 + 3/5 ) + ( 4/5 + 6/5 ) + 5/5
= 2 + 2 + 2 + 2 + 1
= 2 x 4 + 1
= 8 +1
= 9
c) 1/8 + 1/12 + 3/8 + 5/12
= ( 1/8 + 3/8 ) + ( 1/12 + 5/12)
= 4/8 + 6/12
= 1/2 + 1/2
= 2/4 = 1/2
mỏi tay rồi
d; (1 - \(\dfrac{1}{2}\)) x (1 - \(\dfrac{1}{3}\)) x (1 - \(\dfrac{1}{4}\)) x ... x ( 1 - \(\dfrac{1}{100}\))
= \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{3}{4}\) x ... x \(\dfrac{99}{100}\)
= \(\dfrac{1}{100}\)
Lời giải:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$
Lại có:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.
S=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81=1-1/81=1/81
80/81 là đúng