Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì n là số nguyên dương nên suy ra : 2n -1 là số nguyên dương
suy ra 2^ 2n-1 nguyên dương
suy ra 2^2^2n-1 nguyên dương
mà 3 là số nguyên dương
suy ra 2^2^2n-1 + 3 là số nguyên dương ( dpcm)
chứng minh bài toán theo cách quy nạp toán học.
Với n=2 suy ra:\(\frac{1}{3}+\frac{1}{4}>\frac{13}{14}\left(TM\right)\)
Giả sử bài toán trên đúng với mọi n=k,ta cần chứng minh nó đúng với n=k+1,tức là:
\(S_k=\frac{1}{k+2}+\frac{1}{k+3}+\frac{1}{k+4}+....+\frac{1}{2\left(k+1\right)}>\frac{13}{14}\)
Thật vậy:
\(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{2\left(k+1\right)}\)
\(=\frac{1}{k+1}+\frac{1}{k+2}+....+\frac{1}{2k}+\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\)
\(=S_k+\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\)
\(>\frac{13}{14}+\frac{2k+2}{2\left(k+1\right)\left(2k+1\right)}+\frac{2k+1}{2\left(k+1\right)\left(2k+1\right)}-\frac{2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)
\(=\frac{13}{14}+\frac{2\left(k+1\right)+2k+1-2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)
để dễ hiểu,,mik xin viết thêm nha(không phải để kiếm điểm,có người nhờ nên mới thế này:))
\(\frac{13}{14}+\frac{2\left(k+1\right)+2k+1-2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)
\(=\frac{13}{14}+\frac{1}{2\left(k+1\right)\left(2k+1\right)}>\frac{13}{14}\left(k>1\right)\)
\(\Rightarrow S_{k+1}>\frac{13}{14}\)
\(\Rightarrow S_k>\frac{13}{14}\)
Phép chứng minh hoàn tất_._
ta co 0^1=0^2=...=0^n=0
1^1=1^2=...=1^n=1
Ta có : \(0^1=0^3=\cdot\cdot\cdot=0^n=0\left(n\ge2\right)\)
\(1^1=1^2=\cdot\cdot\cdot=1^n=1\left(n\ge2\right)\)
Vậy bài toán đã được chứng minh
Ta có :
\(3^{n+2}-2^{n+2}+3^n-2^n\) =\(3^n.3^2-2^n.2^2+3^n-2^n\)
=\(3^n.9-2^n.4+3^n-2^n\) =\(3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
=\(3^n.10-2^n.5=3^n.10-2^{n-1}.2.5\) = \(3^n.10-2^{n-1}.10\)
=\(10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (ĐPCM)
Sửa : 3n+2-2n+2+3n-2n
= 3n.9 - 2n.4+3n-2n
= 3n.10 - 2n.5
= 3n.10 - 2n.1/2.10
= 10 . (3n-2n.1/2) chia hết cho 10
Sửa lại đầu bài là:
\(5^n.\left(5^n+1\right)-6^n.\left(3^n+2^n\right)\) chia hết cho 91
Với n = 1 > 0, ta có:
2ⁿ + 2 = 4
2n + 5 = 7
Mà 4 < 7
⇒ 2ⁿ + 2 > 2n + 5 là vô lí
Em xem lại đề nhé
2n+2 mà chị có phải 2n+2 đâu ạ