K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

vì n là số nguyên dương nên suy ra : 2n -1 là số nguyên dương

suy ra 2​^ 2n-1 nguyên dương 

suy ra 2^2^2n-1 nguyên dương

mà 3 là số nguyên dương

suy ra 2^2^2n-1 + 3 là số nguyên dương ( dpcm)

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:
$2^{2n+1}=4^n.2\equiv 1^n.2\equiv 2\pmod 3$

$\Rightarrow$ đặt $2^{2n+1}=3k+2$ với $k$ tự nhiên.

Do đó:

$2^{2^{2n+1}}+3=2^{3k+2}+3=8^k.4+3\equiv 1^k.4+3\pmod 7$

$\equiv 7\equiv 0\pmod 7$
Mà với $n$ nguyên dương thì $2^{2^{2n+1}}+3>7$ nên $2^{2^{2n+1}}+3$ là hợp số.

19 tháng 5 2016

\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

19 tháng 5 2016

sử dụng qui nạp: 
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*) 
(*) đúng khi n= 1 
giả sử (*) đúng với n= k, ta có: 
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1) 
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta: 
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)² 
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*

22 tháng 6 2018

https://olm.vn/hoi-dap/question/914244.html