Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tổng: 5(6x + 11y) + (x + 7y) = 30x + 55y + x + 7y = 31x + 62y = 31(x + 2y)
=> 5(6x + 11y) + (x + 7y) chia hết cho 31 (1)
Ta có: 6x + 11y chia hết cho 31 => 5(6x + 11y) chia hết cho 31, kết hợp vs (1) đc x + 7y chia hết cho 31
Xét tổng: 4(2x + 3y) + (9x + 5y) = 8x + 12y + 9x + 5y = 17x + 17y = 17(x + y)
=> 4(2x + 3y) + (9x + 5y) chia hết cho 17 (1)
+ Chứng minh theo chiều xuôi (tức là có 2x + 3y chia hết cho 17, chứng minh 9x + 5y chia hết cho 17)
Ta có: 2x + 3y chia hết cho 17 => 4(2x + 3y) chia hết cho 17, kết hợp vs (1) đc 9x + 5y chia hết cho 17
+ Chứng minh theo chiều ngược (tức là có 9x + 5y chia hết cho 17, chứng minh 2x + 3y chia hết cho 17)
Ta có: 9x + 5y chia hết cho 17, kết hợp vs (1) đc 4(2x + 3y) chai hết cho 17
Mà ƯCLN(4,17) = 1
=> 2x + 3y chia hết cho 17
Vậy: 2x + 3y chia hết cho 17 <=. 9x + 5y chia hết cho 17
a/
2x+3y+9x+5y=11x+8y = 17x+17y-(6x+9y)=17(x+y)-3(2x+3y)
17(x+y) chia hết cho 17
2x+3y chia hết cho 17 => 3(2x+3y) chia hết cho 17 => (2x+3y)+(9x+5y) chia hết cho 17 mà 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17
Các trường hợp khác tương tự
a) Ta có 2x + 3y \(⋮\)17
=> 9(2x + 3y) \(⋮\)17
=> 18x + 27y \(⋮\)17
=> 18x + 10y + 17y \(⋮\)17
=> 2(9x + 5y) + 17y \(⋮\)17
Vì 17y \(⋮\)17
=> 2(9x + 5y) \(⋮\)17
=> 9x + 5y \(⋮\)17 (Vì 2 không chia hết cho 17)
b) Ta có a + 4b \(⋮\)13
=> 10(a + 4b) \(⋮\)13
=> 10a + 40b \(⋮\)13
=> 10a + b + 39b \(⋮\)13
Vì 39b \(⋮\)13
=> 10a + b \(⋮\)13 (đpcm)
c) 3a + 2b \(⋮\)17
=> 10(3a + 2b) \(⋮\)17
=> 30a + 20b \(⋮\)17
=> 30a + 3b + 17b \(⋮\)17
=> 3(10a + b) + 17b \(⋮\)17
Vì 17b \(⋮\)17
=> 3(10a + b) \(⋮\)17
=> 10a + b \(⋮\)17(Vì 3 không chia hết cho 17) (đpcm)
Giả sử x+7y chia hết cho 31
=> 6(x+7y) chia hết cho 31
=> 6x+42y chia hết cho 31
=> 6x+11+31 chia hết cho 31
Mà 6x+11 chia hết cho 31 (theo bài ra)
=> Nếu 6x+11 chia hết cho 31 thì x+7y chia hết cho 31 (đpcm)
Ta có: \(6x+11y⋮31\Rightarrow5.\left(6x+11y\right)⋮31\Rightarrow30x+55y⋮31\left(1\right)\)
Mà \(\left(30x+55y\right)+\left(x+7y\right)=30x+55y+x+7y\)
\(=31x+62y=31.\left(x+2y\right)⋮31\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+7y⋮31\) (do x, y \(\in\) Z)
Vậy nếu \(6x+11y⋮31\) thì \(x+7y⋮31\)
đặt A=6(x+7y)-(6x+11y)
=6x +42y-6x-11y
=31y
do 31y chia hết cho 31
6x+11y chia hết cho 31=>6(x+7y) chia hết cho 31
do (6,31)=1=>x+7y chia hết cho 31
vậy nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
dat A=6.(x+7)-(6x+11)
=(6x+42 ) -(6x+11)
ma 6x +11chia het cho 31
suy ra 6x +42 chia het cho 31
a) \(\frac{31}{17}+\frac{-5}{13}+\frac{-8}{13}-\frac{14}{17}\)
\(=\left(\frac{31}{17}-\frac{14}{17}\right)+\left(\frac{-5}{13}+\frac{-8}{13}\right)\)
\(=1+\left(-1\right)\)
\(=0\)
b) \(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}+\frac{5}{7}\)
\(=\frac{-5}{7}.\left(\frac{2}{11}+\frac{9}{11}\right)+\frac{5}{7}\)
\(=\frac{-5}{7}.1+\frac{5}{7}\)
\(=\frac{-5}{7}+\frac{5}{7}\)
\(=0\)
a) Ta có: (10a + b)+8(3a + 2b)=34a+17b chia hết cho 17.
Mặt khác: 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17, từ đó 10a + b chia hết cho 17.
Ngược lại, do 10a + b chia hết cho 17 => 8(3a + 2b) chia hết cho 17 mà (8; 17)= 1 => 3a+2b chia hết cho 17.
b) Tương tự, lấy (x + 7y) + 5(6x + 11y)
c) Cũng tương tự, lấy (x + 10y) + 3(4x +y)
Nhớ tíck mình nha! :)