K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

Ta có

2a4 + 2b4 + 8 \(\ge\)2ab + 4a + 4b

<=> (2a4 - 4a2 + 2) + (2b4 - 4b2 + 2) + (2a2 - 4a + 2) + (2b2 - 4b + 2) + (a2 - 2ab + b2) + a2 + b2\(\ge\)0

<=> 2(a2 - 1)2 + 2(b2 - 1)2 + 2(a - 1)2 + 2(b - 1)2 + (a - b)2 + a2 + b2 \(\ge\)0 (đúng)

8 tháng 9 2018

có bđt x² + y² ≥ (x+y)²/2 (*) 
cm: (*) <=> 2x²+2y² ≥ x²+y²+2xy <=> x²+y²-2xy ≥ 0 <=> (x-y)² ≥ 0 bđt đúng 
dấu "=" khi x = y 

ad bđt (*) vào bài toán: 
a^4 + b^4 ≥ (a²+b²)²/2 ≥ [(a+b)²/2]²/2 = [(2²)/2]²/2 = 2 (đpcm) ; dấu "=" khi a = b = 1 

8 tháng 9 2018

Áp dụng BĐT Bunhiacopxki: 

\(\left(a^2+b^2\right)\left(1+1\right)\ge\left(a+b\right)^2\) 

\(\Rightarrow\left(a^4+b^4\right)\left(1+1\right)\ge\left(a^2+b^2\right)^2\ge\frac{\left(a+b\right)^2}{2}=2\) 

Dấu "=" <=> a=b=1

6 tháng 12 2016

\(bt\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\Leftrightarrow\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+2\frac{1}{2}ab+\frac{1}{4}b^2+\frac{3}{4}b^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{1}{2}b\right)^2+\frac{1}{2}b^2\right]\ge0\) (luôn đúng )

\(\Rightarrowđpcm\)

6 tháng 12 2016

- Toán này lớp 8 nek ~

20 tháng 8 2015

 

\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\text{ luôn đúng với mọi a,b}\)

\(\text{Vậy }a^4+b^4\ge a^3b+3ab^3\text{ với mọi a,b; dấu "=" xảy ra khi x=y}\)

20 tháng 10 2015

tớ viết lộn chỗ kia \(\left(\sqrt{2}.a.\frac{1}{\sqrt{2}}+b.1\right)^2\) thêm b.1 vô nka triều :D

20 tháng 10 2015

Cậu ta lúc nào cũng câu hỏi tương tự