Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\text{ luôn đúng với mọi a,b}\)
\(\text{Vậy }a^4+b^4\ge a^3b+3ab^3\text{ với mọi a,b; dấu "=" xảy ra khi x=y}\)
- Xét hiệu: a4 + b4 - ab3 -a3b = a( a3 - b3) - b ( a3 - b3)
= (a-b)2 . ( a2 + ab + b2) ≥ 0 với mọi x ∈ R ( đpcm).
CHÚ Ý: BÀI TOÁN SAU:
Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)
Trở lại với bài toán: chú ý: a-1+b-1+c-1=0
=> \(\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3=3\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Ta phải CM: (a-1)(b-1)(c-1)\(\ge\)\(-\frac{1}{4}\)
đặt: x=a-1, y=b-1, z=c-1
khi đó bài toán trở thành: x+y+z=0, CM xyz\(\ge-\frac{1}{4}\)
Ta có: -y=x+z => CM xz(x+z)\(\le\frac{1}{4}\)
Áp dung BĐT Cauchy và biến đổi đồng nhất
tương tự với -x và -z cộng lại ta được DPCM
Từ x/2 = y/3 => x/10 = y/15 (1)
Từ y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) ta có: x/10 = y/15 = z/12
Áp dụng t/c dãy tỷ số bằng nhau ta có:
x/10 = y/15 = z/12 = (x + y - z)/(10 + 15 - 12) = 39/13 = 3
Từ x/10 = 3 => x = 30
Từ y/15 = 3 => y = 45
Từ z/12 = 3 => z = 36
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(a^2+1+1+1\right)\left(1+\left(\frac{b+c}{2}\right)^2+\left(\frac{b+c}{2}\right)^2+1\right)\ge\left(1.a+\frac{b+c}{2}.1+\frac{b+c}{2}.1+1.1\right)^2\)
\(\Leftrightarrow4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)
MẶT KHÁC ÁP DỤNG BĐT AM-GM TA CÓ:
\(\left(b^2+3\right)\left(c^2+3\right)=3b^2+3c^2+b^2c^2+1+8=2b^2+2c^2+\left(b^2+c^2\right)+\left(b^2c^2+1\right)+8\)
\(\ge2b^2+2c^2+2bc+2bc+8=2\left(b+c\right)^2+8=4\left(\frac{\left(b+c\right)^2}{2}+2\right)\)
NHƯ VẬY:
\(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(\frac{\left(b+c\right)^2}{2}+2\right)\left(a^2+3\right)\ge4\left(a+b+c+1\right)^2\)
ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c=1
Ta dự đoán được đẳng thức xảy ra khi a = b = c = 1.
Theo nguyên lí Dirichlet tồn tại trong ba số\(a^2-1;b^2-1;c^2-1\) tồn tại ít nhất hai số có tích không âm. Không mất tính tổng quát,giả sử rằng \(\left(a^2-1\right)\left(b^2-1\right)\ge0\)
\(\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Leftrightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8=4\left(a^2+b^2+2\right)\)
\(\Leftrightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+1+1\right)\)
\(\Leftrightarrow VT\ge4\left(a^2+b^2+1+1\right)\left(1+1+1+c^2\right)\)
Áp dụng BĐT Bunhiacopxki suy ra \(VT\ge4\left(a+b+c+1\right)^2\Rightarrow Q.E.D\)
Dấu "=" xảy ra khi a = b = c = 1
Đúng không ạ???
\(bt\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\Leftrightarrow\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+2\frac{1}{2}ab+\frac{1}{4}b^2+\frac{3}{4}b^2\right)\ge0\)\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{1}{2}b\right)^2+\frac{1}{2}b^2\right]\ge0\) (luôn đúng )
\(\Rightarrowđpcm\)
- Toán này lớp 8 nek ~