K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

i don't know

31 tháng 8 2017

em mới hok lớp 6 thui mà hi hi

2 tháng 6 2018

Ta có:\(a+2b+3c=0\Rightarrow\left(a+2b+3c\right)^2=a^2+4b^2+9c^2+2\left(2ab+3ac+6bc\right)=0\)

\(\Rightarrow20+2\left(2ab+3ac+6bc\right)=0\)

\(\Rightarrow2\left(2ab+3ac+6bc\right)=-20\)

\(\Rightarrow2ab+3ac+6bc=-10\)

\(\Rightarrow\left(2ab+3ac+6bc\right)^2=100\)

\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6a^2bc+18abc^2+12ab^2c=100\)

\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6abc\left(a+3c+2b\right)=100\)

\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6abc.0=100\)

\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2=100\)

Ta có: \(a^2+4b^2+9c^2=20\)

\(\Rightarrow\left(a^2+4b^2+9c^2\right)^2=400\)

\(\Rightarrow a^4+16b^4+81c^4+8a^2b^2+18a^2c^2+72b^2c^2=400\)

\(\Rightarrow a^4+16b^4+81c^4+2\left(4a^2b^2+9a^2c^2+36b^2c^2\right)=400\)

\(\Rightarrow a^4+16b^4+81c^4+2.100=400\)

\(\Rightarrow a^4+16b^4+81c^4=200\)

NV
1 tháng 10 2020

Để đơn giản, đặt \(\left(a;-2b;3c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=18\end{matrix}\right.\)

Ta cần tính \(P=x^4+y^4+z^4\)

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-9\)

\(\Rightarrow2\left(x^2y^2+y^2z^2+z^2x^2\right)=\left(xy+yz+zx\right)^2-2xyz\left(x+y+z\right)=81\)

\(x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)}{2}=\frac{18^2-81}{2}=\frac{243}{2}\)

20 tháng 3 2017

chuyển 2a + 4b + 6c sang vế trái ta được:

a^2 + b^2 + c^2 -2a -4b -6c + 14 =0

<=> a^2 -2a + 1 + b^2 - 4b + 4 + c^2 - 6c +9 = 0

<=> (a-1)^2 + (b-2)^2 + (c-3)^2 = 0

=> (a - 1)^2 = 0          a - 1 = 0          a = 1

     (b - 2)^2 = 0  <=>  b - 2 = 0  <=>  b = 2          

     (c - 3)^2 = 0          c - 3 = 0          c = 3

=> a + b + c = 1 + 2 + 3 = 6

Mình trình bày không được đẹp, bạn thông cảm nha =)

6 tháng 8 2016

\(a^2+b^2+c^2+14=2a+4b+6c\)

\(a^2-2a+b^2-4b+c^2-6c+14=0\)

\(a^2-2\times a\times1+1^2-1^2+b^2-2\times b\times2+2^2-2^2+c^2-2\times c\times3+3^2-3^2+14=0\)

\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\left(a-1\right)^2\ge0\)

\(\left(b-2\right)^2\ge0\)

\(\left(c-3\right)^2\ge0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\Leftrightarrow\left(a-1\right)^2=\left(b-2\right)^2=\left(c-3\right)^2=0\)

\(\Leftrightarrow a-1=b-2=c-3=0\)

\(\Leftrightarrow a=1;b=2;c=3\)

\(\Rightarrow a+b+c=1+2+3=6\)