Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đơn giản, đặt \(\left(a;-2b;3c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=18\end{matrix}\right.\)
Ta cần tính \(P=x^4+y^4+z^4\)
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-9\)
\(\Rightarrow2\left(x^2y^2+y^2z^2+z^2x^2\right)=\left(xy+yz+zx\right)^2-2xyz\left(x+y+z\right)=81\)
\(x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)}{2}=\frac{18^2-81}{2}=\frac{243}{2}\)
a) (x - 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x4 - 1)(x4 + 1)(x8 + 1)
= (x8 - 1)(x8 + 1)
= x16 - 1
b) (a2 - 2b)(a2 + 2b)(a4 + 4b2)(a8 + 16b4)
= (a4 - 4b2)(a4 + 4b2)(a8 + 16b4)
= (a8 - 16b4)(a8 + 16b4)
= a16 - 256b8
Câu 1) Ta có\(a^3+2b^2-4b+3=0\Leftrightarrow a^3=-2.\left(b-1\right)^2-1\)\(\le-1\Rightarrow a^3\le-1\Rightarrow a\le-1\Rightarrow a^2\ge1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge1\\a^2b^2\ge b^2\end{cases}}\)\(\Rightarrow a^2+a^2b^2-2b\ge1+b^2-2b\)\(\Leftrightarrow\left(b-1\right)^2\le0\)
Mà \(\left(b-1\right)^2\ge0\)với mọi b nên \(\left(b-1\right)^2=0\)\(\Rightarrow b=1\)
Thay b=1 vào 2 pt ban đầu được \(\hept{\begin{cases}a^3+2-4+3=0\\a^2+a^2-2=0\end{cases}}\)<=> a=1(tm)
Vậy (a,b)=(1;1)
Câu 2 bạn xem ở đây nhé http://olm.vn/hoi-dap/question/716469.html
b: \(=5:\dfrac{-3}{4}\cdot x^2:x\cdot y^4:y^3=\dfrac{-20}{3}xy\)
c: \(=-9:\dfrac{4}{5}\cdot a^5:a^4\cdot b^4:b^3=-\dfrac{45}{4}ab\)
d: \(=\dfrac{64a^{15}b^6c^9}{4a^6b^2c^8}=16a^9b^4c\)
g: \(=\dfrac{3}{4}:\dfrac{3}{2}\cdot a^5:a^2\cdot b^3:b^2\cdot c^2:c=\dfrac{1}{2}a^3bc\)
Ta có P=a^2+4b^2=(a^2-4ab+4b^2) +4ab
=(a-2b)^2+4ab=5^2+4*4=41
Vậy P=41 tại a-2b=5, ab=4
Ta có: (a-2b)^2 +4ab = 5^2 + 4.4
a^2 -4ab + 4b^2 +4ab = 25+16
a^2 + 4b^2 = 41
Vậy P =41
Ta có:\(a+2b+3c=0\Rightarrow\left(a+2b+3c\right)^2=a^2+4b^2+9c^2+2\left(2ab+3ac+6bc\right)=0\)
\(\Rightarrow20+2\left(2ab+3ac+6bc\right)=0\)
\(\Rightarrow2\left(2ab+3ac+6bc\right)=-20\)
\(\Rightarrow2ab+3ac+6bc=-10\)
\(\Rightarrow\left(2ab+3ac+6bc\right)^2=100\)
\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6a^2bc+18abc^2+12ab^2c=100\)
\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6abc\left(a+3c+2b\right)=100\)
\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6abc.0=100\)
\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2=100\)
Ta có: \(a^2+4b^2+9c^2=20\)
\(\Rightarrow\left(a^2+4b^2+9c^2\right)^2=400\)
\(\Rightarrow a^4+16b^4+81c^4+8a^2b^2+18a^2c^2+72b^2c^2=400\)
\(\Rightarrow a^4+16b^4+81c^4+2\left(4a^2b^2+9a^2c^2+36b^2c^2\right)=400\)
\(\Rightarrow a^4+16b^4+81c^4+2.100=400\)
\(\Rightarrow a^4+16b^4+81c^4=200\)