Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
xy + 1 = 1111...1.1000...05 + 1
(2004 c/s 1)(2003 c/s 0)
xy + 1 = 1111...1.3.333...35 + 1
(2004 c/s 1)(2003 c/s 3)
xy + 1 = 3333...3.333...35 + 1
(2004 c/s 3)(2003 c/s 3)
xy + 1 = 3333...3.333...34 + 3333...3 + 1
(2004 c/s 3)(2003 c/s 3)(2004 c/s 3)
xy + 1 = 3333...34.3333...34
(2003 c/s 3)(2003 c/s 3)
xy + 1 = 3333...342 là số chính phương
(2003 c/s 3)
Chứng tỏ ...
Ta co
x=10^2003 10^2002 ... 10^0
10x=10^2004 ... 10^1
Suy ra 9x=10^2004-1
hay x=(10^2004-1)/9
Mat khac
y=10^2004 5
Do do
xy 1=(10^2004-1)(10^2004 5)/9 1
=(10^4008 4.10^2004 4)/9
=[(10^2004 2)/3]^2
Lai co 10^2004 2 co tong cac chu so =3 nen chia het cho 3
Suy ra (10^2004 2)/3 la so tu nhien.
Vay xy 1 la scp.
đây là bài tổng quát nè bạn, áp dụng bài này nhé ^_^
https://olm.vn/hoi-dap/question/1123004.html
\(M=\frac{2004a}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(M=\frac{2004a}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(M=\frac{2004ac+abc+abc^2}{abc\left(ac+c+1\right)}=\frac{a^2bc^2+abc+abc^2}{abc\left(ac+c+1\right)}=\frac{abc\left(ac+1+c\right)}{abc\left(ac+c+1\right)}=1\)
Em vào câu hỏi tương tự tham khảo:
a) Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)
Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)
<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)
<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)
<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)
a) \(\frac{x^2}{a}=\frac{y^2}{b}\Leftrightarrow bx^2=ay^2\)
b) \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)
Khi đó: \(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=2\frac{x^{2008}}{a^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
Bạn sửa lại đề bài câu 2) nhé ^^
2) \(a+b+c+d=0\Leftrightarrow a+b=-c-d\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-\left[c^3+d^3+3cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\)
\(A=\frac{2004^3+1}{2004^2-2003}\)
\(A=\frac{2004+1}{1-2003}\)\(=\frac{2005}{-2002}\)
\(B=\frac{2005^3-1}{2005^2+2006}\)\(=\frac{2005-1}{1+2006}=\frac{2004}{2007}\)
\(\Rightarrow A>B\)
\(A=\frac{2004^3+1}{2004^2-2003}\)
\(A=\frac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}\)
\(A=\frac{2005.\left(2004^2-2003\right)}{2004^2-2003}=2005\)
\(B=\frac{2005^3-1}{2005^2+2006}\)
\(B=\frac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=\frac{2004.\left(2005^2+2006\right)}{2005^2+2006}=2004\)
Tham khảo nhé~
Lời giải:
Xét \(x< 0\Rightarrow \frac{x}{(x+2004)^2}< 0< \frac{1}{8016}\)
Xét \(x\geq 0\)
Ta có \((x+2004)^2-8016x=x^2+2004^2+4008x-8016x\)
\(=(x-2004)^2\geq 0\)
Suy ra \((x+2004)^2\geq 8016x\)
\(\Rightarrow \frac{x}{(x+2004)^2}\leq \frac{x}{8016x}=\frac{1}{8016}\)
Ta có đpcm