Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
Gọi 2 số cần tìm là a và b khi a và b chia cho 5 có số dư khác nhau nên a khác b. Giả sử a<b
Trong 1 phép chia số dư lớn nhất có giá trị nhỏ hơn số chia 1 đơn vị => số dư lớn nhất của a và b khi chia cho 3 có giá trị là 3-1=2
Do a khác b và giả sử a<b nên achia cho 3 có số dư là 1 và b chia cho 3 có số dư là 2
=> a-1 chia hết cho 3 và b-2 chia hết cho 3
=> (a-1)+b-2 chia hết cho 3 => a+b-3 chia hết cho 3. D0 3 chia hết cho 3 => a+b chia hết cho 3 (dpcm)
2 Số không chia hết cho 3 thì có dư là 1 và 2
Gọi 2 số đó là 3k+1 và 3k+2 (k\(\in\)N)
Tổng 2 số đó là: 3k+1 + 3k+2 = 3k + 3k + 3 = 3(2k+1) chia hết cho 3
Vậy nếu 2 số tự nhiên ko chia hết cho 3 mà khi chia cho 3 có số dư khác nhau thì tổng của chúng chia hết cho 3
Nhấn đúng cho mk nha!!!!!!!!!!