Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có \(\Delta=\left(-m\right)^2-4\left(-1\right)1=m^2+4\ge4>0\forall m\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt (đpcm)
bài này nếu ai lanh sẽ thấy hệ số \(a\) và \(c\) trái dấu nên \(\Rightarrow\) (đpcm) luôn ; không cần trình bày dài dòng .
b) vì phương trình đã luôn có 2 nghiệm phân biệt rồi nên không cần tìm điện kiện để phương trình có 2 nghiệm phân biệt nữa .
áp dụng hệ thức vi - ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-1\\x_1+x_2=-m\end{matrix}\right.\)
ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\)
\(\Leftrightarrow\left(-m\right)^2-2\left(-1\right)=m^2+2=5\) \(\Leftrightarrow m^2=3\Leftrightarrow m=\pm\sqrt{3}\)
vậy \(m=-\sqrt{3};m=\sqrt{3}\)
Lời giải:
a) Ta thấy:
\(\Delta=(5m-1)^2-4(6m^2-2m)=m^2-2m+1=(m-1)^2\geq 0\) với mọi $m$
Do đó pt đã cho luôn có nghiệm với mọi $m$
b) Áp dụng định lý Viete, với $x_1,x_2$ là nghiệm thì:
\(\left\{\begin{matrix} x_1+x_2=5m-1\\ x_1x_2=6m^2-2m\end{matrix}\right.\)
Do đó: \(x_1^2+x_2^2=1\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=1\)
\(\Leftrightarrow (5m-1)^2-2(6m^2-2m)=1\)
\(\Leftrightarrow 13m^2-6m+1=1\)
\(\Leftrightarrow 13m^2-6m=0\Rightarrow \left[\begin{matrix} m=0\\ m=\frac{6}{13}\end{matrix}\right.\)
\(\Delta=\left(m-2\right)^2+8m=m^2+4m+4=\left(m+2\right)^2\ge0\) \(\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)
\(A=x_1^2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-2\right)^2+4m\)
\(A=m^2+4\ge4\)
\(\Rightarrow A_{min}=4\) khi \(m=0\)
\(\Delta'=4-m+1=5-m\ge0\Rightarrow m\le5\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
a/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-40=0\)
\(\Leftrightarrow4^3-12\left(m-1\right)-40=0\Rightarrow m=3\)
b/ \(P=\left(x_1x_2\right)^2+5\left(x_1+x_2\right)^2-10x_1x_2+4\)
\(=\left(m-1\right)^2+5.4^2-10\left(m-1\right)+4\)
\(=m^2-12m+95\)
\(=\left(7-m\right)\left(5-m\right)+60\)
Do \(m\le5\Rightarrow\left\{{}\begin{matrix}7-m>0\\5-m\ge0\end{matrix}\right.\) \(\Rightarrow\left(7-m\right)\left(5-m\right)\ge0\)
\(\Rightarrow P\ge60\Rightarrow P_{min}=60\) khi \(m=5\)
\(5\left(x^2_1+x_2^2\right)=5\left(x_1^2+x_2^2+2x_1x_2-2x_1x_2\right)=5\left(x_1+x_2\right)^2-10x_1x_2\)
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)
Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)
Thay vào ta được:
\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)
\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)
Vậy \(0< m\le1\)
b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)
\(x_1^3+x_2^3\le16\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)
\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)
\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)
\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)
\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))
Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)
(x2-3x+2)(x2-9x+20)=4
=>(x-1)(x-2)(x-4)(x-5)=4
Đặt x-3=a , phương trình tương đương:
(a+2)(a+1)(a-1)(a-2)=4
=>(a2-1)(a2-4)=4
=>a4-5a2=0
Tự giải nốt nhé!