K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

Lời giải:

a) Ta thấy:

\(\Delta=(5m-1)^2-4(6m^2-2m)=m^2-2m+1=(m-1)^2\geq 0\) với mọi $m$

Do đó pt đã cho luôn có nghiệm với mọi $m$

b) Áp dụng định lý Viete, với $x_1,x_2$ là nghiệm thì:

\(\left\{\begin{matrix} x_1+x_2=5m-1\\ x_1x_2=6m^2-2m\end{matrix}\right.\)

Do đó: \(x_1^2+x_2^2=1\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=1\)

\(\Leftrightarrow (5m-1)^2-2(6m^2-2m)=1\)

\(\Leftrightarrow 13m^2-6m+1=1\)

\(\Leftrightarrow 13m^2-6m=0\Rightarrow \left[\begin{matrix} m=0\\ m=\frac{6}{13}\end{matrix}\right.\)

14 tháng 2 2016

    (x2-3x+2)(x2-9x+20)=4

=>(x-1)(x-2)(x-4)(x-5)=4

Đặt x-3=a , phương trình tương đương:

    (a+2)(a+1)(a-1)(a-2)=4

=>(a2-1)(a2-4)=4

=>a4-5a2=0

Tự giải nốt nhé!

30 tháng 6 2018

a) ta có \(\Delta=\left(-m\right)^2-4\left(-1\right)1=m^2+4\ge4>0\forall m\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt (đpcm)

bài này nếu ai lanh sẽ thấy hệ số \(a\)\(c\) trái dấu nên \(\Rightarrow\) (đpcm) luôn ; không cần trình bày dài dòng .

b) vì phương trình đã luôn có 2 nghiệm phân biệt rồi nên không cần tìm điện kiện để phương trình có 2 nghiệm phân biệt nữa .

áp dụng hệ thức vi - ét ta có : \(\left\{{}\begin{matrix}x_1x_2=-1\\x_1+x_2=-m\end{matrix}\right.\)

ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\)

\(\Leftrightarrow\left(-m\right)^2-2\left(-1\right)=m^2+2=5\) \(\Leftrightarrow m^2=3\Leftrightarrow m=\pm\sqrt{3}\)

vậy \(m=-\sqrt{3};m=\sqrt{3}\)

NV
15 tháng 5 2019

\(\Delta=\left(m-2\right)^2+8m=m^2+4m+4=\left(m+2\right)^2\ge0\) \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)

\(A=x_1^2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-2\right)^2+4m\)

\(A=m^2+4\ge4\)

\(\Rightarrow A_{min}=4\) khi \(m=0\)

26 tháng 7 2016

a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.

NV
25 tháng 11 2019

\(\Delta'=4-m+1=5-m\ge0\Rightarrow m\le5\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)

a/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-40=0\)

\(\Leftrightarrow4^3-12\left(m-1\right)-40=0\Rightarrow m=3\)

b/ \(P=\left(x_1x_2\right)^2+5\left(x_1+x_2\right)^2-10x_1x_2+4\)

\(=\left(m-1\right)^2+5.4^2-10\left(m-1\right)+4\)

\(=m^2-12m+95\)

\(=\left(7-m\right)\left(5-m\right)+60\)

Do \(m\le5\Rightarrow\left\{{}\begin{matrix}7-m>0\\5-m\ge0\end{matrix}\right.\) \(\Rightarrow\left(7-m\right)\left(5-m\right)\ge0\)

\(\Rightarrow P\ge60\Rightarrow P_{min}=60\) khi \(m=5\)

NV
25 tháng 11 2019

\(5\left(x^2_1+x_2^2\right)=5\left(x_1^2+x_2^2+2x_1x_2-2x_1x_2\right)=5\left(x_1+x_2\right)^2-10x_1x_2\)