K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2024

\(S=\dfrac{2}{10\cdot12}+\dfrac{2}{12\cdot14}+...+\dfrac{2}{98\cdot100}\)

\(S=\dfrac{2}{10}-\dfrac{2}{12}+\dfrac{2}{12}-\dfrac{2}{14}+...+\dfrac{2}{98}-\dfrac{2}{100}\)

\(S=\dfrac{2}{10}-\dfrac{2}{100}=\dfrac{9}{50}=0,18\)

Vậy \(S>\dfrac{1}{10}\)

1 tháng 2 2024

\(S=\dfrac{2}{10\cdot12}+\dfrac{2}{12\cdot14}+\dfrac{2}{14\cdot16}+...+\dfrac{2}{98\cdot100}\)

\(S=\dfrac{2}{10}-\dfrac{2}{12}+\dfrac{2}{12}-\dfrac{2}{14}+...+\dfrac{2}{98}-\dfrac{2}{100}\)

\(S=\dfrac{2}{10}-\dfrac{2}{100}\)

\(S=\dfrac{20}{100}-\dfrac{2}{100}\)

\(S=\dfrac{18}{100}=\dfrac{9}{50}=0,18\)

\(\dfrac{1}{10}=0,1\), mà \(0,1< 0,18\)

 \(\Rightarrow S>\dfrac{1}{10}\left(đpcm\right)\)

9 tháng 6 2015

S=\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+.....+\frac{2}{98.100}\)

S=\(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+........+\frac{1}{98}-\frac{1}{100}\)

S=\(\frac{1}{10}-\frac{1}{100}\)

S=\(\frac{9}{100}\)<\(\frac{1}{10}\)

30 tháng 3 2017

tính S = cánh tính sai phân  

Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)

Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)

Từ (1) và (2) suy ra đpcm.

1 tháng 4 2022

Hay quá

 

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

30 tháng 4 2017

Bài 1:

a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)

\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)

\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)

\(x=\dfrac{7}{20}:\dfrac{2}{5}\)

\(x=\dfrac{7}{8}\)

Vậy \(x=\dfrac{7}{8}\).

b) \(\dfrac{3}{5}=\dfrac{24}{x}\)

\(x=\dfrac{5\cdot24}{3}\)

\(x=40\)

Vậy \(x=40\).

c) \(\left(2x-3\right)^2=16\)

\(\left(2x-3\right)^2=4^2\)

\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)

\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)

Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).

Bài 2:

a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)

\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)

\(=\dfrac{5-88+5}{20}\)

\(=\dfrac{78}{20}=\dfrac{39}{10}\)

b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=0\)

Bài 3:

a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)

\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)

\(=\dfrac{-3}{7}\cdot1\)

\(=\dfrac{-3}{7}\)

b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)

\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)

\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)

\(=4-\dfrac{11}{4}\)

\(=\dfrac{16}{4}-\dfrac{11}{4}\)

\(\dfrac{5}{4}\)

Bài 4:

\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)

\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)

\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)

\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)

\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)

\(=2\cdot\dfrac{1}{15}\)

\(=\dfrac{2}{15}\)

20 tháng 3 2017

— S = 1/4 + 2/4 +...+10/4 (1)

= 1 + 1/4 + 2/4 +...+ 9/4 (2)

=> Lấy (2) trừ đi (1) ta được:

1 — 10/4 = —6/4

Vì 14 = 14/1 = 84/6 mà —6/4 < 84/6

Do đó S < 14

21 tháng 3 2017

Cậu có có thể giúp mk 2 câu tiếp theo đc ko

30 tháng 3 2017

1.

Ta có:

Vì b+1-b=1=>\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{1}{b.\left(b+1\right)}\)<\(\dfrac{1}{b.b}\)(1)

Vì b-(b-1)=1=>\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{1}{b.\left(b-1\right)}\)>\(\dfrac{1}{b.b}\)(2)

Từ (1) và (2)=>\(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b.b}< \dfrac{1}{b-1}-\dfrac{1}{b}\)

Câu 2 bạn hỏi bạn Bùi Ngọc Minh nhé PR cho nóleuleu

30 tháng 3 2017

Bài 2:

Ta có:S=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{9^2}=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)

S>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\left(1\right)\)

S<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{2}{5}< S< \dfrac{8}{9}\)

15 tháng 2 2024

S = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{8}\) + \(\dfrac{1}{9}\)

Vì \(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>..>\dfrac{1}{9}\) ta có:

\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) > \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}>\dfrac{1}{9}.5\) = \(\dfrac{5}{9}>\dfrac{5}{10}=\dfrac{1}{2}\)

Cộng vế với vế ta có: 

S > \(\dfrac{1}{2}+\dfrac{1}{2}=1\) (1)

\(\dfrac{1}{3}+\dfrac{1}{4}< \dfrac{2}{3}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}< \dfrac{1}{5}.5=1\)

Cộng vế với vế ta có:

\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\) < \(\dfrac{2}{3}\) + 1 < 2 (2)

Kết hợp (1) và (2) ta có: 

1 < S < 2 (đpcm)

 

22 tháng 7 2018

N = \(\dfrac{1}{10^2}+\dfrac{1}{11^2}+\dfrac{1}{12^2}+...+\dfrac{1}{n^2}\)

= \(\dfrac{1}{10.10}+\dfrac{1}{11.11}+\dfrac{1}{12.12}+...+\dfrac{1}{n.n}\)

=> N < \(\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}+...+\dfrac{1}{\left(n-1\right).n}\)

=> N < \(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(=>N< \dfrac{1}{9}-\dfrac{1}{n}\)

=> N < \(\dfrac{1}{9}\)

Vậy N < \(\dfrac{1}{9}\)

22 tháng 3 2019

???

7 tháng 9 2018

Bài này mình da làm roi dễ

7 tháng 9 2018

S = \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+......+\dfrac{1}{10000}\)

\(\Rightarrow S=\dfrac{1}{4.1}+\dfrac{1}{4.4}+\dfrac{1}{4.9}+.....+\dfrac{1}{4.2500}\)

\(\Rightarrow S=\dfrac{1}{4.\left(1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}\right)}< \dfrac{1}{2}\)

\(\RightarrowĐPCM\)