K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2020

Có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\\ \Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\\ \Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)

11 tháng 8 2016

Xin lỗi, mình bị nhầm, bài này của lớp 8.

11 tháng 8 2016

Xin lỗi, mình bị nhầm, bài này của lớp 8

21 tháng 7 2018

AD tích chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

\(\Rightarrow DPCM\)

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

14 tháng 7 2016

\(\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

\(ad+a^2+bd+ab=bc+bd+c^2+cd\)

\(a\left(b+d\right)+a^2=c\left(b+d\right)+c^2\)

\(a+a^2=c+c^2\)

\(a=c\)

27 tháng 5 2020

\(\frac{a}{b}=\frac{c}{d}\)=>a.d=b.c (1)

\(\frac{a-b}{b}=\frac{c-d}{d}=>\)(a-b).d=(c-d).b

=>a.d-b.d=b.c-b.d (2)

Từ (1)(2)=>\(\frac{a}{b}=\frac{c}{d}=>\frac{a-b}{b}=\frac{c-d}{d}\)

Vậy.....(kết luận)....

Nhớ tic nếu thấy hay và đúng nha

Chúc bạn học tốthihi

22 tháng 4 2017

Ta có : 

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)\(\Rightarrow A>1\)( 1 )

Lại có :

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}=2\)

\(\Rightarrow A< 2\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là số tự nhiên ( vì 1 < A < 2 )

22 tháng 4 2017

Ta thấy: 

\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d} \)

\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

Do đó:

\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+c}{a+b+c+d}>A\)

VÀ  \(A>\)\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(\Rightarrow2>A>1\)

\(\Rightarrow\)A không là số tự nhiên với a,b,c,d > 0

Vậy A không là số tự nhiên với a,b,c,d > 0

27 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\)

\(ad< bc\)

\(2018ad< 2018bc\)

\(2018ad+cd< 2018bc+cd\)

\(\left(2018a+c\right)d< \left(2018b+d\right)c\)

\(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)

Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)

Ta có:a/b<c/d<=>a.d<b.c

<=>2018a.d<2018b.c

<=>2018a.d+c.d<2018b.c+d.c

<=>d(2018a+c)<c(2018b+d)

<=>2018a+c/2018b+d<c/d(dpcm)

Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)

\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)

\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)