\(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)thì 

a,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

8 tháng 8 2016

a) Nhân cả hai vế với b, ta có đpcm

b) Đề sai

c) Nhân cả hai vế với b, ta có đpcm

d) Bạn trên đã làm r , mình  k trình bày lại nữa

8 tháng 8 2016

d,

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)

Ta có :

\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\)                           (1)

\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\)                            (2)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\)              (3)

Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

16 tháng 6 2016

a) \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (quy đồng mẫu chung)

Vì b,d > 0 nên bd > 0. Do đó ad < bc (đpcm)

b) ad < bc \(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (cùng chia cho bd)

Vì b,d > 0 nên bd > 0. Do đó \(\frac{a}{b}< \frac{c}{d}\) (rút gọn tử và mẫu)

16 tháng 6 2016

a, Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\Rightarrow ad< cb\) 

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

2 tháng 12 2016

Đặt\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk ;c=dk\)

\(\Rightarrow\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

     \(\frac{c-d}{d}=\frac{dk-d}{kd}=\frac{d\left(k-1\right)}{kd}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2)=> \(\frac{a-b}{a}=\frac{c-d}{c}\)

10 tháng 8 2016

đăng lại làm gì