Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x>1\Rightarrow x-\dfrac{1}{x}=\dfrac{\left(x+1\right)\left(x-1\right)}{x}>0\)
Xét hiệu::
\(2\left(x-\dfrac{1}{x}\right)\left(x^2+\dfrac{1}{x^2}+1\right)-3\left(x-\dfrac{1}{x}\right)\left(x+\dfrac{1}{x}\right)\)
\(=2\left(x^2+\dfrac{1}{x^2}+1\right)-3\left(x+\dfrac{1}{x}\right)\)
\(=2\left(\left(x+\dfrac{1}{x}\right)^2-1\right)-3\left(x+\dfrac{1}{x}\right)\)
\(=2\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)-2\)
\(=\left(2\left(x+\dfrac{1}{x}\right)+1\right)\left(x+\dfrac{1}{x}-2\right)\)
Ta có \(x>1\Rightarrow x+\dfrac{1}{x}>2\sqrt{x.\dfrac{1}{x}}=2\Rightarrow x+\dfrac{1}{x}-2>0\)
Và \(2\left(x+\dfrac{1}{x}\right)+1>0\)
\(\Rightarrow\left(2\left(x+\dfrac{1}{x}\right)+1\right)\left(x+\dfrac{1}{x}-2\right)>0\)
\(\Leftrightarrow2\left(x^3-\dfrac{1}{x^3}\right)>3\left(x^2-\dfrac{1}{x^2}\right)\) (đpcm)
Có x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1
x10+x5+1=(x5+12)2+34x10+x5+1=(x5+12)2+34
⇒x10+x5+1>0⇒x10+x5+1>0
x2+x+1=(x+12)2+34>0x2+x+1=(x+12)2+34>0
⇒x8−x7+x5−x4+x3−x+1>0
⇒x8−x7+x5−x4+x3−x+1>0
ích mk nha bạn
Đặt 2x - 1 = a
=> x = \(\dfrac{a+1}{2}\)
=> x2 - x + 1 = \(\dfrac{a^2+3}{4}\)
=> x2 + x + 1 = \(\dfrac{a^2+4a+7}{4}\)
(2x + 1)\(\sqrt{x^2-x+1}\) > (2x - 1)\(\sqrt{x^2+x+1}\) (1)
(a + 2)\(\sqrt{\dfrac{a^2+3}{4}}\) > a\(\sqrt{\dfrac{a^2+4a+7}{4}}\)
=> (a + 2)2 \(\dfrac{a^2+3}{4}\) > a2 \(\dfrac{a^2+4a+7}{4}\)
=> a2(a + 2)2 + 3(a + 2)2 > a2(a + 2)2 + 3a2
=> 3a2 + 12(a + 1) > 3a2 (đúng) (2)
(2) đúng => (1) đc CM
M làm được r
Ko cần nx