Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)
2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)
3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x
4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x
a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5
b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6
Có: \(a^3-3a^2+2a=a\left(a^2-3a+2\right)\)\(=a\left(a^2-a-2a+2\right)=a\left[a\left(a-1\right)-2\left(a-1\right)\right]\)
\(=a\left(a-1\right)\left(a-2\right)\)
Vì \(a\left(a-1\right)\left(a-2\right)\)là tích ba số liên tiếp nên có chứa thừa số chia hết cho 2 và chia hết cho 3
mà 2 và 3 là hai số nguyên tố cùng nhau nên tích \(a\left(a-1\right)\left(a-2\right)⋮\left(2\cdot3\right)\Leftrightarrow a\left(a-1\right)\left(a-2\right)⋮6\)
Vậy \(a^3-3a^2+2a⋮6\)
\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)
Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
Ta có:
2a(a+1) chắc chắn chia hết cho 2 và a2(a+1) cũng vậy nên tổng trên chia hết cho 2 (1)
a có dạng: 3k;3k+1;3k+2 (k E N)
+) a=3k => tổng trên chia hết cho 3
+) a=3k+1 => a2(a+1) chia 3 dư 2 và: 2a(a+1) chia 3 dư 1
=> tổng trên chia hết cho 3 (2+1=3 chia hết cho 3)
+) a=3k+2=> a+1 chia hết cho 3 nên: tổng trên chia hết cho 3 (2)
Từ (1) và (2)=> tổng trên chia hết cho 2 và 3 mà: (2;3)=1=> a chia hết cho 2.3=6 (ĐPCM)
b, tương tự
thôi shitbo ko biết đừng trả lời hộ mình
a) \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì a; a + 1 và a + 2 là 3 số liên tiếp nên :
+) chắc chắn có một số chia hết cho 2 (1)
+)chắc chắn có một số chia hết cho 3 (2)
Mà ƯC(2;3) = 1
Từ (1) và (2) => \(a\left(a+1\right)\left(a+2\right)⋮2\cdot3=6\left(đpcm\right)\)
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6