K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Có: \(a^3-3a^2+2a=a\left(a^2-3a+2\right)\)\(=a\left(a^2-a-2a+2\right)=a\left[a\left(a-1\right)-2\left(a-1\right)\right]\)

\(=a\left(a-1\right)\left(a-2\right)\)

Vì \(a\left(a-1\right)\left(a-2\right)\)là tích ba số liên tiếp nên có chứa thừa số chia hết cho 2 và chia hết cho 3

mà 2 và 3 là hai số nguyên tố cùng nhau nên tích \(a\left(a-1\right)\left(a-2\right)⋮\left(2\cdot3\right)\Leftrightarrow a\left(a-1\right)\left(a-2\right)⋮6\)

Vậy \(a^3-3a^2+2a⋮6\)

27 tháng 11 2017

1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)

2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)

3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x

4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x

13 tháng 9 2018

a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5

b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6

31 tháng 10 2016

Violympic toán 8

a)

b) đặt A=a^5b-ab^5=a(a^4b-b^5)=a(b(a^4-b^4))=ab... chia hết cho 2 (1)
+) Nếu a,b đồng du khi chia cho 3 thi a-b chia het cho 3 suy ra A chia het cho 3 (2)
+) Nếu a,b ko dong du khi chia cho 3 thi a+b chia het cho 3 suy ra Âchi het cho 3 (3)
Tu (2),(3) suy ra A luon chia het cho 3 (4)
Ma ab(a-b)(a+b)(a^2+b^2) chia het cho 5 (5)
Tu (1),(4),(5) suy ra A chia het cho 2;3;5 Vậy A chia het cho 30

30 tháng 10 2016

phân tích đa thức thành nhân tử bn ơi

 

3 tháng 10 2016

Ta có :

\(A=a^3b-ab^3\)

\(=ab\left(a^2-b^2\right)\)

\(=ab\left(a-b\right)\left(a+b\right)\)

  1. Nếu a hoặc b chẵn thì tích A chia hết cho 2.

Nếu cả a và b đều lẻ thì tổng / hiệu chúng chia hết cho 2\(\Rightarrow A\) chia hết cho 2

      2. Nếu a hoặc b là bội của 3 thì A chia hết cho 3

Nếu cả a và b đều không chia hết cho 3 thì chia cho 3 có thể dư 1 hoặc 2.

Nếu a và b chia cho 3 cùng dư 1 hoặc 2 thì hiệu chúng chia hết cho 3, còn khác số dư thì chỉ có thể : 1 số chia 3 dư 1 và 1 số chia 3 dư 2, tổng chia 3 dư 3, tức không dư.

Bởi vậy A luôn chia hết cho 3.

Mà \(ƯCLN\left(2;3\right)=1\)

\(\Rightarrow A\) chia hết cho 2 . 3 = 6

Vậy ...

24 tháng 8 2017

dễ thôi

Cho đường tròn (O;R) đường kính AB,dây CD vuông góc với AB tại H,đường thẳng d tiếp xúc với đường tròn tại A,CO DO cắt đường thẳng d lần lượt tại M N,CM DN cắt đường tròn (O) lần lượt tại E F,Chứng minh tứ giác MNEF nội tiếp,Chứng minh ME.MC = NF.ND,Tìm vị trí của H để tứ giác AEOF là hình thoi,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

25 tháng 11 2017

a) \(A=a^3b-ab^3=\left(a^3b-ab\right)-\left(ab^3-ab\right)\)

      \(=b.a\left(a^2-1\right)-a\left(b^3-b\right)\)

      \(=a\left(a-1\right)\left(a+1\right)b-a\left(b-1\right)b\left(b+1\right)\)

\(Do:\)\(a-1\) \(;\)\(a\) \(;\) \(a+1\) là 3 số liên tiếp nên :

     \(\left(a-1\right)a\left(a+1\right)\) \(⋮6\)

Tương tự : \(\left(b-1\right)b\left(b+1\right)\) \(⋮6\)

\(\Rightarrow\) \(A\) \(⋮\)\(6\)

25 tháng 11 2017

ak thak you bn

27 tháng 7 2017

Ta có:a3+11a

=a3-a+12a

=a(a2-1)+12a

=(a-1)(a+1)a+12a

Vì a-1;a;a+1 là tích 3 số nguyên liên tiếp nên a(a-1)(a+1) chia hết cho 6

Mà 12a chia hết cho 6

Suy ra a3+11a chia hết cho 6

14 tháng 7 2018

\(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=a^3-3ab\left(a+b\right)+b^3+b^3-3bc\left(b+c\right)+c^3+c^3-3ca\left(c+a\right)+a^3\)

\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)\(⋮3\)

Lấy  \(a,b,c\)lần lượt chia cho \(2\)ta được tối đa 2 số dư là:  \(0;1\)Do đó tồn tại ít nhất 2 số có cùng số dư khi chia cho 2

\(\Rightarrow\)hiệu của chúng chia hết cho 2

\(\Rightarrow\)\(A⋮2\)

mà  \(\left(2;3\right)=1\)\(\Rightarrow\)\(A⋮6\)