K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét hiệu a2+b2+c2+m2+n2+p2 - (a+b+c+m+n+p)

=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) \(⋮\)2

mà a2+b2+c2+m2+n2+p2\(\ge\)6 ( vì a,b,c,m,np nguyên dương)

=> a+b+c+m+n+p là hợp số

11 tháng 4 2018

Xét hiệu a2+b2+c2+m2+n2+p2  - (a+b+c+m+n+p)

=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) ⋮ 2

mà a2+b2+c2+m2+n2+p2 ≥ 6 ( vì a,b,c,m,np nguyên dương)

=> a+b+c+m+n+p là hợp số 

7 tháng 3 2018

Ta có \(5^{n+2}+3^{n+2}-3^n-5^n=5^n.25+3^n.9-3^n-5^n\)

\(=5^n.\left(25-1\right)+3^n.\left(9-1\right)\)

\(=5^n.24+3^n.8\)

\(=5^n.24+3^{n-1}.24\)

\(=24.\left(5^n+3^{n-1}\right)⋮24\)( đpcm)

7 tháng 3 2018

Ai nhanh tay mình k đúng cho!

8 tháng 4 2015

Giả sử m;n;p không có số nào chia hết cho 3

=> m ; n;p có dạng 3k +1 hoặ 3k + 2 (k thuộc N) 

=> m^2;n^2;p^2 có dạng 3x + 1(X thuộc N)

=> n^2 + p^2 cia 3 dư 2

Mà m^2 chia 3 dư 1 

=> m^2 khác n^2 + p^2 ( trái vói giả thiết )

Vậy m;n;p có ít nhất1 số chia hết cho 3

=>m*n*p chia hết cho 3                                (1)

Chứng minh tương tự :

m*n*p chia hếu cho 5                                    (2)

Từ (1) và (2) và  (3;5)=1

=>m*n*p chia heetscho 3*5 =15

10 tháng 2 2018

b, +, Nếu p=2 thì : p^2+14 = 18 ko tm

+, Nếu p=3 thì : p^2+14 = 23 tm

+, Nếu p > 3 => p ko chia hết cho 3

=> p^2 chia 3 dư 1 => p^2+14 chia hết cho 3

Mà p^2+14 > 3 => p^2+14 là hợp số

Vậy p = 3

Tk mk nha