Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của I lay my love on you - Toán lớp 8 - Học toán với OnlineMath dv
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)^{\left(1\right)}\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
5n(n - 1)(n + 1) chia hết cho 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> \(n^5-n⋮5\)(2)
Vì n , (n-1) , (n+1) là 3 số tự nhiên liên tiếp nên luôn tồn tại 1 số chia hết cho 2 và 3 trong 3 số này
Mà ( 2 ; 3 ) = 1
=> n(n+1)(n-1) chia hết cho 2.3=6
=> n(n+1)(n-1)(n²+1 ) chia hết cho 6
Hay n^5 - n chia hết cho 6 (3)
Từ (2) , (3) và ( 5 ; 6 ) = 1
=> n^5 -n chia hết cho 5.6 = 30
Vậy n^5 - n chia hết cho 30
Ta có: n^5 - n = n (n^4 -1 )
=n (n^2-1)(n^2+1)
=n(n-1)(n+1)(n^2 - 4 +5)
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30
và n(n-1)(n+1)5 chia hết cho 30
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30
hay n^5-n chia hết cho 30
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
chia hết cho 3: Tích của ba số tự nhiên liên tiếp
Chia hết cho 5: Tích của 5 số tự nhiên liên tiếp
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Tạ Minh Khoa
Ta có: n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)
= n.[(n4 – n2) + (n2 – 1)]
= n.[n2(n2 – 1) + (n2 – 1)]
= n.(n2 – 1).(n2 + 1)
= n.(n2 – n + n – 1)(n2 + 1)
= n.[(n2 – n) + (n – 1)].(n2 + 1)
= n.[n(n- 1) + (n – 1)].(n2 + 1)
= n.(n – 1).(n + 1).(n2 + 1)
Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)
Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n
=> n5 – n có chữ số tận cùng bằng 0.
=> n5 – n chia hết cho 10 (2)
Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).
Tạ Minh Khoa
Ta có: n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)
= n.[(n4 – n2) + (n2 – 1)]
= n.[n2(n2 – 1) + (n2 – 1)]
= n.(n2 – 1).(n2 + 1)
= n.(n2 – n + n – 1)(n2 + 1)
= n.[(n2 – n) + (n – 1)].(n2 + 1)
= n.[n(n- 1) + (n – 1)].(n2 + 1)
= n.(n – 1).(n + 1).(n2 + 1)
Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)
Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n
=> n5 – n có chữ số tận cùng bằng 0.
=> n5 – n chia hết cho 10 (2)
Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).