\(n^5m-nm^5\)chia hết cho 30 với mọi số nguyên m,n

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Câu hỏi của I lay my love on you - Toán lớp 8 - Học toán với OnlineMath    dv

30 tháng 7 2018

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)^{\left(1\right)}\)

              \(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

              \(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)

               \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5 

    5n(n - 1)(n + 1) chia hết cho 5

=>  n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5 

=> \(n^5-n⋮5\)(2)

 Vì n , (n-1) , (n+1) là 3 số tự nhiên liên tiếp nên luôn tồn tại 1 số chia hết cho 2 và 3 trong 3 số này

Mà ( 2 ; 3 ) = 1

=> n(n+1)(n-1) chia hết cho 2.3=6

=> n(n+1)(n-1)(n²+1 ) chia hết cho 6

Hay n^5 - n chia hết cho 6 (3)

Từ (2) , (3) và ( 5 ; 6 ) = 1

=> n^5 -n chia hết cho 5.6 = 30

Vậy n^5 - n chia hết cho 30

 

27 tháng 8 2017

a) Ta có :

\(n^3\)-   n = \(n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Mới làm tới đây thôi

Với n = 1, ta có 
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6 
Giả sử khẳng định đúng với n = k, tức là: 
k^3 + 9k^2 + 2k chia hết 6 
Đặt k^3 + 9k^2 + 2k = 6Q 
Ta sẽ CM khẳng định đúng với n = k + 1, ta có: 
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1) 
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1 
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12 
= 6Q + (3k^2 + 21k) + 12 
= 6Q + 3k(k + 7) + 12 
= 6Q + 3k[(k + 1) + 6] + 12 
= 6Q + 3k(k + 1) + 6.3k + 12 
Vì k và k + 1 là 2 số nguyên liên tiếp nên: 
k(k + 1) chia hết cho 2 
=> 3k(k + 1) chia hết cho 3.2 = 6 
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6 
Vậy theo nguyên lý quy nạp ta chứng minh được 
n^3 + 9n^2 + 2n chia hết 6

22 tháng 12 2017

chứng minh rằng n5−nchia hết cho 5, với mọi n là số nguyên

Giải:Ta có:n5-n=n(n4-1)=n(n2+1)(n2-1)

=n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2-4+5)=n(n-1)(n+1)(n2-4)+5(n-1)n(n+1)

=\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\) chia hết cho 5

Vậy.........................

26 tháng 1 2017

m3 - m = m(m2 - 1) = (m - 1)m(m + 1) \(⋮\) 6 (tích cả 3 số nguyên liên tiếp)

=> m3 - m \(⋮\) 6 (đpcm)

+) 6m \(⋮\) 6

=> m3 - m + 6m \(⋮\) 6

=> m3 + 5m \(⋮\) 6 (đpcm)

+) 18m \(⋮\) 6

=> m3 - m - 18m \(⋮\) 6

=> m3 - 19m \(⋮\) 6 (đpcm)

30 tháng 7 2018

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right).\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right).\left(n^2-4+5\right)=n\left(n-1\right)\left(n+1\right).\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

+) n(n-1)(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

=> n(n-1)(n+1) \(⋮\)6

=> \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮6\\5n\left(n+1\right)\left(n-1\right)⋮6\end{matrix}\right.\)\(\Rightarrow n^5-n⋮6\) (1)

+) n(n-1)(n+1)(n-2)(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5

5n(n+1)(n-1) \(⋮5\)

=> n(n+1)(n-1)(n+2)(n-2)+5n(n+1)(n-1) \(⋮5\) => n^5-n\(⋮5\) (2)

từ 1 và 2 => n^5-n \(⋮6.5=30\)

30 tháng 7 2018

n5 - n = n(n2 -1)2 = n(n2 - 1)(n2 + 1)

= n(n - 1)(n + 1)(n2 - 4 + 5)

= n(n - 1)(n + 1)(n2 - 4) + n(n - 1)(n + 1).5

= n(n - 1)(n + 1)(n + 2)(n - 2) + 5n(n - 1(n+ 1)

Vì n(n + 1)(n - 1)(n - 2)(n + 2) chia hết cho 5 và 6 nên chia hết cho 30

5n(n - 1)(n + 1) chia hết cho 5 và 6 nên nó cũng chia hết cho 30

Vậy n5 - n luôn chia hết cho 30

5 tháng 7 2016

xem lại câu a nhé bạn

20 tháng 4 2017

Ta có: n3– n = n(n2 – 1) = n(n – 1)(n + 1)

Với n ∈ Z là tích của ba số nguyên liên tiếp. Do đó nó chia hết cho 3 và 2 mà 2 và 3 là hai số nguyên tố cùng nhau nên n3 – n chia hết cho 2, 3 hay chia hết cho 6.


20 tháng 4 2017

Bài giải:

Ta có: n3– n = n(n2 – 1) = n(n – 1)(n + 1)

Với n ∈ Z là tích của ba số nguyên liên tiếp. Do đó nó chia hết cho 3 và 2 mà 2 và 3 là hai số nguyên tố cùng nhau nên n3 – n chia hết cho 2, 3 hay chia hết cho 6.

NM
24 tháng 7 2021

ta có :

\(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích của ba số nguyên liên tiếp nên \(a^3-a\text{ chia hết cho 6}\)

ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

ta có tích trên chia hết cho 6 do chứng minh ở ý trên, ta cần chỉ ra nó chia hết cho 5 nữa.

thật vậy: nếu a=5q hoặc a=5q+1 hoặc a=5q+4 thì a(a-1)(a+1) chia hết cho 5

nếu a=5q+2 hoặc a=5q+3 thì \(a^2+1\text{ chia hết cho 5}\)

vậy \(a^5-a\text{ chia hết cho 30}\)

24 tháng 7 2021

Ta có  a3 - a = a(a2 - 1) = (a - 1)a(a + 1) \(⋮6\)(tích 3 số nguyên liên tiếp)

Ta có a5  - a = a(a4 - 1) = a(a2 - 1)(a2 + 1) = (a - 1)a(a + 1)(a2 + 1) 

= (a - 1)a(a + 1)(a2 - 4 + 5) 

= (a - 1)a(a + 1)(a2 - 4) + 5(a - 1)a(a + 1)

= (a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1)

Nhận thấy (a - 1)a(a + 1) \(⋮\)6

=> 5(a - 1)a(a + 1) \(⋮\)30

Lại có (a - 2)(a - 1)a(a + 1)(a + 2) \(⋮30\)(tích 5 số nguyên liên tiếp) 

=> a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1) \(⋮\)30

=> a5 - a \(⋮30\)

27 tháng 8 2016

Ta có : \(\left(5n+2\right)^2-4\)

         \(=\left(5n+2-2\right).\left(5n+2+2\right)\)

         \(=5n\left(5n+4\right)\)

Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)

 

27 tháng 8 2016

(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4 
= 25n^2 + 20n = 5n(5n + 4) 

--> (52+2)^2 - 4 = 5n(5n + 4) 
Mà 5 chia hết cho 5 
-->5n(5n + 4) chia hết cho 5