Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n(2n – 3) – 2n(n + 1) = 2 n 2 – 3n – 2 n 2 – 2n = - 5n
Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .
VT = x^2 + 5x - ( x^2 - x -6)
= x^2 + 5x - x^2 + x +6
= 6x +6 = 6.(x+1) chia hết cho 6 với mọi n là số nguyên
Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)chia hết cho 5.
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)\)chia hết cho 5.
\(n^3-n=n\left(n^2-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)⋮2\)
\(\left(n-1\right)n\left(n+1\right)⋮3\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
\(\Rightarrow n^3-n⋮6\)
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
\(n\left(3n-1\right)-3n\left(n-2\right)=3n^2-n-\left(3n^2-6n\right)=3n^2-n-3n^2+6n=5n\)
luôn chia hết cho \(5\)với mọi số nguyên \(n\).
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Có: \(-5⋮5\Rightarrow-5n⋮5\)
Vậy: \(n\left(2n-3\right)-2n\left(n+1\right)⋮3\) (đpcm)
Ta có : n(n+5) - (n-3)(n+2) = n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n+1) \(⋮\) 6 với mọi n
Vậy n(n+5) - (n-3)(n+2) chia hết cho 6 với mọi n là số nguyên
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2+3n+2n+6\)
\(=\left(n^2-n^2\right)-\left(5n-3n-2n\right)+6\)
\(=6⋮6\) (đpcm)
Câu hỏi của I lay my love on you - Toán lớp 8 - Học toán với OnlineMath dv
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)^{\left(1\right)}\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
5n(n - 1)(n + 1) chia hết cho 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> \(n^5-n⋮5\)(2)
Vì n , (n-1) , (n+1) là 3 số tự nhiên liên tiếp nên luôn tồn tại 1 số chia hết cho 2 và 3 trong 3 số này
Mà ( 2 ; 3 ) = 1
=> n(n+1)(n-1) chia hết cho 2.3=6
=> n(n+1)(n-1)(n²+1 ) chia hết cho 6
Hay n^5 - n chia hết cho 6 (3)
Từ (2) , (3) và ( 5 ; 6 ) = 1
=> n^5 -n chia hết cho 5.6 = 30
Vậy n^5 - n chia hết cho 30