K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Áp dụng hằng đẳng thức đáng nhớ ta có :

x4+2x2+1=(x2+1)2

Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0

=>PT trên vô nghiệm

26 tháng 3 2018

Theo hằng đẳng thức đáng nhớ , ta có :

\(x^4+2x^2+1=\left(x^2+1\right)^2\)

Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\)

Vậy phương trình vô nghiệm.

13 tháng 4 2019

a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)

\(\Leftrightarrow x^2+3\ge3\forall x\)

\(\Rightarrow\)Đa thức trên vô nghiệm

1 tháng 7 2019

a, x^2 + 3

có x^2 > 0 => x^2 + 3 > 3

=> đa thứ trên vô nghiệm

b, x^4 + 2x^2 + 1

x^4 > 0 ; 2x^2 >

=> x^4 + 2x^2 >

=> x^4 + 2x^2 + 1 >

vậy _

c, -4 - 3x^2

= -(4 + 3x^2)

3x^2 > 0 => 3x^2 + 4 > 4

=> -(4 + 3x^2) < 4

vậy_

13 tháng 4 2016

có \(x^4+x^2\ge0\)

=> đa thức trên <0 

=> đt trên vô nghiệm

chú ý: đây là toán lớp 8 mà

4 tháng 7 2019

a) \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy đa thức trên vô nghiệm

4 tháng 7 2019

b) \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Vì \(\left(x+1\right)^2\ge0\)nên \(\left(x+1\right)^2+2>0\)

Vậy đa thức trên vô nghiệm

15 tháng 3 2018

\(P\left(x\right)=2x^2+2x+\dfrac{5}{4}\)

\(\Leftrightarrow P\left(x\right)=2\left(x^2+x+\dfrac{5}{16}\right)\)

\(\Leftrightarrow P\left(x\right)=2\left[x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{5}{4}\right]\)

\(\Leftrightarrow P\left(x\right)=2\left[\left(x^2+\dfrac{1}{2}x\right)+\left(\dfrac{1}{2}x+\dfrac{5}{4}\right)\right]\)

\(\Leftrightarrow P\left(x\right)=2\left[x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\right]\)

\(\Leftrightarrow P\left(x\right)=2\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

Với mọi x ta có :

\(+,\left(x+\dfrac{1}{2}\right)^2\ge0\)

+, \(\dfrac{3}{4}>0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow2\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\)

\(\Leftrightarrow P\left(x\right)>0\)

\(\Leftrightarrow P\left(x\right)\) vô nghiệm

15 tháng 3 2018

P(x)=\(2x^2+2x+\dfrac{5}{4}=2\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

=>\(2\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}\right)=\dfrac{-3}{4}=>2\left(x+\dfrac{1}{2}\right)^2=\dfrac{-3}{4}\left(vônghiemej\right)\)

3 tháng 8 2016

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

3 tháng 8 2016

bạn ở dưới phải ghi ngoặc nhọn chứ