K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

a) \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy đa thức trên vô nghiệm

4 tháng 7 2019

b) \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Vì \(\left(x+1\right)^2\ge0\)nên \(\left(x+1\right)^2+2>0\)

Vậy đa thức trên vô nghiệm

13 tháng 4 2019

a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)

\(\Leftrightarrow x^2+3\ge3\forall x\)

\(\Rightarrow\)Đa thức trên vô nghiệm

1 tháng 7 2019

a, x^2 + 3

có x^2 > 0 => x^2 + 3 > 3

=> đa thứ trên vô nghiệm

b, x^4 + 2x^2 + 1

x^4 > 0 ; 2x^2 >

=> x^4 + 2x^2 >

=> x^4 + 2x^2 + 1 >

vậy _

c, -4 - 3x^2

= -(4 + 3x^2)

3x^2 > 0 => 3x^2 + 4 > 4

=> -(4 + 3x^2) < 4

vậy_

26 tháng 5 2019

Bài 1:

a)Có \(B\left(y\right)=m.\left(-1\right)-3=2\)

\(m.\left(-1\right)\) \(=2+3\)

\(m.\left(-1\right)\) \(=5\)

\(m\) \(=5:\left(-1\right)\)

\(m\) \(=-5\).

b)Có \(-1\) là nghiệm của đa thức D(x).

=>\(D\left(x\right)=\left(-2\right).\left(-1\right)^2+\left(-1\right)a-7a+3=0\)

<=> \(\left(-2\right)-a+7a+3=0\)

<=> \(\left(-2\right)-a+7a=-3\)

<=> \(-a+7a=-2-3\)

<=> \(-a+7a=-5\)

<=> \(\left(-1+7\right)a=-5\)

<=> \(6a=-5\)

<=> a= \(\frac{-5}{6}\)

26 tháng 5 2019

B2;

a)\(x^2+x+1\)

=(\(x^2+0,5x\))+(0,5x+0,25)+0,75

=x(x+0,25)+0,5(x+0,5)+0,75

=\(\left(x+0,5\right)^2\)+0,75.

\(\left(x+0,5\right)^2\ge0\)

=>\(x^2+x+1\) không có nghiệm.

b)\(x^2+2x+2\)

=\(x^2+x+x+1+1\)

=\(\left(x^2+x\right)+\left(x+1\right)+1\)

=\(x\left(x+1\right)+\left(x+1\right)\)

=\(\left(x+1\right)\left(x+1\right)+1\)

=\(\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

=> \(x^2+2x+2\) không có nghiệm.

c)\(-x^2+2x-3\)

=\(-\left(x^2-2x+3\right)\)

=\(-\left(x^2-2.x.1+2+1\right)\)

=\(-\left[\left(x-1\right)^2+2\right]\)

=\(-\left(x-1\right)^2-2\)

\(\left(x-1\right)^2\le0\)

=> \(-x^2+2x-3\) không có nghiệm.

7 tháng 7 2017

Bài 1:

a) Cho đa thức \(G\left(x\right)=-x-8=0\)

\(\Rightarrow-x=8\)

\(\Rightarrow x=-8\)

Vậy -8 là nghiệm của đa thức G(x).

b)Ta có: \(C\left(-2\right)=m.\left(-2\right)^2+2.\left(-2\right)+16=0\)

\(\Rightarrow C\left(x\right)=4m-4+16=0\)

\(\Rightarrow4m=-12\)

\(\Rightarrow m=-3\)

Bài 2.

a) Cho B(y)=-3y+5=0

\(\Rightarrow y=\dfrac{5}{3}\)

b) M(x)=2x2+1

Ta có: 2x2\(\ge0\)

nên: M(x)=2x2+1 \(\ge1\)

\(\Rightarrow M\left(x\right)\) không có nghiệm.

Các bài sau tương tự, không khó đâu bạn. Chúc bạn học tốt!

8 tháng 7 2017

cảm ơn bạn nha

1 tháng 5 2017

a/ P(x) = x2 + 3x + 2 - x = x2 + 2x + 2

Q(x) = -2x3 + 2x2 - x - 5 + 2x3 = 2x2 - x - 5

b/ Q(-1) = 2 . (-1)2 - (-1) - 5

= 2 + 1 - 5 = -2

c/ P(x) = x2 + 2x + 2 = x2 + 2x + 1 + 1

= (x + 1)2 + 1. Dễ thấy:

(x + 1)2 \(\ge0\forall x\) => (x + 1)2 + 1 > 0

=> P(x) vô no (đpcm)

1 tháng 5 2017

a)

\(P\left(x\right)=x^2+3x+2-x\)

\(P\left(x\right)=\left(3x-x\right)+x^2+2\)

\(P\left(x\right)=2x+x^2+2\)

\(Q\left(x\right)=-2x^3+2x^2-x-5+2x^3\)

\(Q\left(x\right)=\left(-2x^3+2x^3\right)+2x^2-x-5\)

\(Q\left(x\right)=2x^2-x-5\)

b)

Tại x = -1 thì đa thức Q(x) đạt giá trị là:

\(Q\left(-1\right)=2.\left(1\right)^2-\left(-1\right)-5\)

\(Q\left(-1\right)=2.1+1-5=2+1-5=-2\)

c)

Có: \(P\left(x\right)=2x+x^2+2\)

Hay \(P\left(x\right)=x^2+2x+2\)

\(P\left(x\right)=x^2+x+x+1+1\)

\(P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\)

\(P\left(x\right)=x.\left(x+1\right)+1.\left(x+1\right)+1\)

\(P\left(x\right)=\left(x+1\right).\left(x+1\right)+1\)

\(P\left(x\right)=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy đa thức P(x) không có nghiệm.

Chúc bạn học tốt!ok

a) Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\)

hay đa thức \(x^2-x+1\) không có nghiệm(đpcm)

b) Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2+x+1>0\forall x\)

hay đa thức \(x^2+x+1\) không có nghiệm(đpcm)

c) Ta có: \(x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)

hay \(x^2-2x+2>0\forall x\)

hay đa thức \(x^2-2x+2\) không có nghiệm(đpcm)

d) Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)

hay đa thức \(x^2+2x+2\) không có nghiệm(đpcm)

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)

21 tháng 4 2017

a) A(x)= \(-2x^4+x^2-x-7-2\)

B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)

b) Thay số:A(x)

\(1^2-1-2-2\cdot1^4+7=3\)

B(x)

\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)

c)\(6x^3-2x^3-7x-12-2\)