Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
Ta có : C = 4x2 + 4y2 - 8x + 4y + 427
=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422
=> C = (2x - 2)2 + (2y + 1)2 + 422
Mà \(\left(2x-2\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall x\)
Nên C = (2x - 2)2 + (2y + 1)2 + 422 \(\ge422\forall x\)
Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)
Vậy C luôn luôn dương (đpcm)
\(x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1\forall x\)
Mà 1>0
\(\Rightarrow x^2-6x+10\) luôn dương \(\forall x\left(đpcm\right)\)
\(x^2-6x+10\)
\(=x^2-2.x.3+9+1\)
\(=\left(x-3\right)^2+1>0\)
\(4x^2-20x+27\)
\(=\left(2x\right)^2-2.2x.5+25+2\)
\(=\left(2x-5\right)^2+2>0\)
\(x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
học tốt
a) A=x2 _ 6x + 10
<=> A=x2-6x+9+1
<=> A=(x-3)2+1 luôn dương với mọi x
b) B=4x2 _ 20x + 27
<=> 4x2-20x +25+2
<=> (2x-5)2+2 luôn dương với mọi x
c) C=x2 + x +1
<=> x2+2.x 1/2 + 1/4 +3/4
<=> (x+1/2)2+3/4 luôn dương với mọi x
\(x^2+y^2-4x-2\)
\(=x^2+y^2-4x+4-6\)
\(=\left(x^2-4x+4\right)+y^2-6\)
\(=\left(x-2\right)^2+y^2-6\ge-6\)
Xem lại đề nha, kết quả vẫn có thể âm mà
A=x2-6x+10
\(A=\left(x-3\right)^2+1>1\)
\(\Rightarrow A\) luôn dương
A = x2 - 6x + 10
= ( x2 - 6x + 9 ) + 1
= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 + x + 5
= ( x2 + x + 1/4 ) + 19/4
= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )
C = 4x2 + 4x + 2
= 4( x2 + x + 1/4 ) + 1
= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
D = ( x - 3 )( x - 5 ) + 4
= x2 - 8x + 15 + 4
= ( x2 - 8x + 16 ) + 3
= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
E = x2 - 2xy + 1 + y2
= ( x2 - 2xy + y2 ) + 1
= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1
=\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)
\(\Rightarrow\)A dương với mọi x,y
X2 + 4x + 10
=(x2 + 4x +4) + 6
=( x+2)2 +6 lớn hơn hoặc bằng 6 nên luôn dương
\(x^2+4x+10=x^2+4x+2^2+6=\left(x+2\right)^2+6\ge6\)
Vậy biểu thức trên luôn dương với mọi x