K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

\(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Mà 1>0 

\(\Rightarrow x^2-6x+10\) luôn dương \(\forall x\left(đpcm\right)\)

2 tháng 9 2021

a, chỉ có luôn ko dương thôi bạn ạ =)))

 \(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)

\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

2 tháng 9 2021

luôn âm chứ bạn :)\

3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )

6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

19 tháng 7 2017

Ta có : \(x^2-6x+10=\left(x^2-2.3.x+9\right)+1=\left(x-3\right)^2+1>0,\forall x\left(đpcm\right)\)

19 tháng 7 2017

\(x^2-6x+10\\ =x^2-2x\times3+3^2+1\\ =\left(x-3\right)^2+1\)

có (x-3)2 \(\ge0\) nên \(\left(x-3\right)^2+1\ge1\)

vậy x2-6x+10 luôn dương với mọi x

bn kham khảo ở đây nha 

Câu hỏi của Mimi - Toán lớp 8 | Học trực tuyến

vào thống kê hoie đáp của mình có chữ màu xanh trng câu hỏi này nhấn zô đó sẽ ra 

hc tốt:~:B~

19 tháng 6 2019

a) \(x^2-8x+2018=x^2-8x+16+2002=\left(x^2-8x+16\right)+2002=\left(x-4\right)^2+2002\)

Vì \(\left(x-4\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2+2002\ge2002\)(Luôn Luôn Dương)

b)\(3x^2+6x+7=3x^2+6x+3+4=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\)

Vì \(3\left(x+1\right)^2\ge0\)

\(\Rightarrow3\left(x+1\right)^2+4\ge4\)(Luôn Luôn Dương)

c)\(3x^2-6x+5=3x^2-6x+3+2=3\left(x^2-2x+1\right)+2=3\left(x-1\right)^2+2\)

Vì \(3\left(x-1\right)^2\ge0\)

\(\Rightarrow3\left(x-1\right)^2+2\ge2\)(Luôn Luôn Dương)

d)\(x^2-8x+19=x^2-8x+16+3=\left(x^2-8x+16\right)+3=\left(x-4\right)^2+3\)

Vì \(\left(x-4\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2+3\ge3\)(Luôn Luôn Dương)

25 tháng 8 2016

=3(x^2-2x+1)+2

=3(x-1)^2+2>0 với mọi x

28 tháng 9 2017

A=x2-6x+10

\(A=\left(x-3\right)^2+1>1\)

\(\Rightarrow A\) luôn dương

28 tháng 8 2020

A = x2 - 6x + 10

= ( x2 - 6x + 9 ) + 1 

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 + x + 5

= ( x2 + x + 1/4 ) + 19/4

= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )

C = 4x2 + 4x + 2 

= 4( x2 + x + 1/4 ) + 1

= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

D = ( x - 3 )( x - 5 ) + 4

= x2 - 8x + 15 + 4

= ( x2 - 8x + 16 ) + 3 

= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

E = x2 - 2xy + 1 + y2

= ( x2 - 2xy + y2 ) + 1 

= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

15 tháng 9 2019

\(\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\) 

\(=\left(x-1\right)^2\)  + (y-2)^2            +  1

Xét nữa là xong

  

20 tháng 7 2016

X+ 4x + 10 

=(x + 4x +4) + 6

=( x+2)+6  lớn hơn hoặc bằng 6 nên luôn dương

20 tháng 7 2016

\(x^2+4x+10=x^2+4x+2^2+6=\left(x+2\right)^2+6\ge6\)

Vậy biểu thức trên luôn dương với mọi x