Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Tổng các góc trong của 1 tam giác là 360 độ => Tứ giác có 3 góc vuông thì góc còn lại = 360-3.90=90 độ => tứ giác là HCN (Tứ giác có 4 góc vuông)
+ Giải sử có hình thang cân ABCD (AB<CD) và ^A=90 => ^B=90 (góc ở đáy)
Ta có AB//CD => ^D=180-^A=180-90=90 (Hai góc trong cùng phía bù nhau)
=> ^C=180-^B=180-90=90 (hai góc trong cùng phía bù nhau)
=> ^A=^B=^C=^D=90 => ABCD là hình chữ nhật
+ Hình bình hành có 1 góc vuông cũng áp dụng tính chất hai góc trong cùng phía bù nhau để c/m
Bài 3:
Ta có: ABCD là hình bình hành
nên AB=CD; AD=BC
mà AB=AD
nên AB=AD=BC=CD
=>ABCD là hình thoi
|
Ta có thể xét 2 tam giác bằng nhau để chứng minh .
Không chắc cho lắm .
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AB//CD
=>góc OAB=góc OCD
mà góc OAB=góc ODC
nên góc ODC=góc OCD
=>OC=OD
=>AC=BD
Xét hình bình hành ABCD có AC=BD
nên ABCD là hình chữ nhật