Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có \(\widehat{B}=\widehat{C}\)
mà cạnh đối diện của góc B là cạnh AC
và cạnh đối diện của góc C là cạnh AB
nên AB=AC
A B C E D
-Tam giác ABC cân tại A có BE và CD là 2 đtt
=> AB=AC => AE=AD
Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC
=> ABE=ACD (c g c)
=>BE=CD
-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G
=> EG=DG , BG=CG
\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG
=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)
=>BD=EC
Xét \(\Delta EBC\) và \(\Delta DCB\) có: BE=CD , BC chung, BD=EC
=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)
=>\(\widehat{EBC}=\widehat{DCB}\)
=> TgABC cân tại A (đpcm)
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác => GB = BM; GC = CN mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G => do đó ∆BCN = ∆CBM vì: BC là cạnh chung CN = BM (gt) (cmt) => => ∆ABC cân tại A
định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau
giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB)
suy ra B=C và
AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC
xét tam giác DBC và tam giác ECB có:
EB=DC(cmt)
BC(chung)
B=C(tam giác ABC cân tại A)
suy ra tam giac sDBC=ACB(c.g.c)
suy ra EC=BD
giả sử có tam giác ABC và 2 đường trung tuyến CN và BM cắt nhau tại G, ta chứng minh AB=AC
xét 2 tam giác: NBG và MCG có:
góc NGB = góc MGC ( vì 2 góc đối đỉnh ) (1)
vì BM, CN là trung tuyến (gt)
=> BG = 2/3 BM, CG = 2/3 CN
mà BM = CN (gt) => BG = CG (2)
=> NG = 1/3 NC, MG = 1/3 MB
=> NG = MG (3)
từ (1) , (2), (3) => tam giác NGB = tam giác MGC (c.g.c)
=> NB = MC (2 cạnh tương ứng)
=> AB = AC (vì NB = 1/2 AB, MC = 1/2 AC)
=> tam giác ABC cân tại A ( đpcm)
giả sử có tam giác ABC và 2 đường trung tuyến CN và BM cắt nhau tại G, ta chứng minh AB=AC
xét 2 tam giác: NBG và MCG có:
góc NGB = góc MGC ( vì 2 góc đối đỉnh ) (1)
vì BM, CN là trung tuyến (gt)
=> BG = 2/3 BM, CG = 2/3 CN
mà BM = CN (gt) => BG = CG (2)
=> NG = 1/3 NC, MG = 1/3 MB
=> NG = MG (3)
từ (1) , (2), (3) => tam giác NGB = tam giác MGC (c.g.c)
=> NB = MC (2 cạnh tương ứng)
=> AB = AC (vì NB = 1/2 AB, MC = 1/2 AC)
=> tam giác ABC cân tại A ( đpcm)
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G
=> G là trọng tâm của tam giác
=> GB = BM; GC = CN
mà BM = CN (giả thiết) nên GB = GC
=> ∆GBC cân tại G => ˆGCB=ˆGBCGCB^=GBC^
do đó ∆BCN = ∆CBM vì:
BC là cạnh chung
CN = BM (gt)
ˆGCB=ˆGBCGCB^=GBC^ (cmt)
=> ˆNBC=ˆMCBNBC^=MCB^ => ∆ABC cân tại A
Ta có hình vẽ:
A B C H 1 2 1 2
Vẽ AH là phân giác của BAC => A1 = A2 (*)
Δ CAH có: C + A1 + H1 = 180o (1)
Δ BAH có: B + A2 + H2 = 180o (2)
Từ (1); (2) kết hợp với (*) và C = B (gt) => H1 = H2
Xét Δ CAH và Δ BAH có:
A1 = A2 (cmt)
AH là cạnh chung
H1 = H2 (cmt)
Do đó, Δ CAH = Δ BAH (g.c.g)
=> AC = AB (2 cạnh tương ứng)
Như vậy, Δ ABC là tam giác cân tại A (đpcm)
Dpcm là gì