K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

 Giả sử ∆ABC  có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác  => GB = BM; GC = CN  mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G =>  do đó ∆BCN = ∆CBM vì:  BC là cạnh chung CN = BM (gt)  (cmt) =>   =>  ∆ABC  cân tại A 

31 tháng 3 2016

định lí đảo mà bạn

27 tháng 3 2016

sach toán 7 tập 2 bạn ơi

27 tháng 3 2016

định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau

giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB) 

suy ra  B=C và

AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC

xét tam giác DBC và tam giác ECB có:

EB=DC(cmt)

BC(chung)
B=C(tam giác ABC cân tại A)

suy ra tam giac sDBC=ACB(c.g.c)

suy ra EC=BD

28 tháng 11 2017

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.

⇒ G là trọng tâm của tam giác

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

QUẢNG CÁO

Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.

Xét ΔGNB và ΔGMC có :

GN = GM (cmt)

GB = GC (cmt)

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.

Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)

⇒ AB = AC ⇒ ΔABC cân tại A.

19 tháng 4 2017

Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G

=> G là trọng tâm của tam giác

=> GB = BM; GC = CN

mà BM = CN (giả thiết) nên GB = GC

=> ∆GBC cân tại G => ˆGCB=ˆGBCGCB^=GBC^

do đó ∆BCN = ∆CBM vì:

BC là cạnh chung

CN = BM (gt)

ˆGCB=ˆGBCGCB^=GBC^ (cmt)

=> ˆNBC=ˆMCBNBC^=MCB^ => ∆ABC cân tại A

5 tháng 4 2019

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

8 tháng 4 2015

Giả sử ∆ABC  cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN

Vì ∆ ABC cân tại A=>  AB = AC mà M, N là trung điểm AC, AB nên CM = BN

Do đó ∆CMB ;∆BNC có:

BC chung

CM = BN (cm trên)

AB = AC (∆ABC  cân)

=> BM = CN (đpcm)

5 tháng 8 2017

Giả sử ∆ABC  cân tại A có hai đường trung tuyến BM và CN, ta chứng minh BM = CN

Vì ∆ ABC cân tại A=>  AB = AC mà M, N là trung điểm AC, AB nên CM = BN

Do đó ∆CMB ;∆BNC có:

BC chung

CM = BN (cm trên)

AB = AC (∆ABC  cân)

=> BM = CN