K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\end{matrix}\right.\\ \RightarrowĐpcm\)

2 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\left(1\right)\)

Thay (1) vào từng vế của đề bài:

\(VT=\dfrac{a^2+ac}{c^2-ac}=\dfrac{bk\left(bk+dk\right)}{dk\left(dk-bk\right)}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\)

Vế phải đặt thừa số chung sẽ ra VT => đpcm.

17 tháng 8 2017

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow a=bk;c=dk\)

\(VT=\dfrac{ac}{bd}=\dfrac{bkdk}{bd}=\dfrac{bdk^2}{bd}=k^2\left(1\right)\)

\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

17 tháng 8 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) =>\(a=bk,c=dk\)

=> \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k.k=k^2\left(1\right)\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}\)

=\(\dfrac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1)và(2)=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Chúc Bạn Học Tốt

11 tháng 12 2022

a; Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

c: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7b^2k^2-3\cdot bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2-3k}{11k^2-8}\)

\(\dfrac{7c^2-3cd}{11c^2-8d^2}=\dfrac{7d^2k^2-3kd^2}{11d^2k^2-8d^2}=\dfrac{7k^2-3k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7c^2-3cd}{11c^2-8d^2}\)

24 tháng 9 2017

Ta có: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Chúc bạn học tốt!

24 tháng 9 2017

Từ giả thiết \(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)=>\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)

=> \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (đpcm). Tick đúng cho tui nhé

23 tháng 7 2017

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\dfrac{a}{b}=\dfrac{3a}{3b}\) ; \(\dfrac{c}{d}=\dfrac{2c}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{3a+2c}{3b+2d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)

24 tháng 7 2017

bạn ko làm hộ tớ phần b ơ

17 tháng 6 2019

a)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{c}{d}\) =>\(\frac{a}{c}=\frac{b}{d}\)

=>\(\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

=>\(\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)

NV
18 tháng 6 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a^2-c^2}{b^2-d^2}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\Rightarrow\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(a-c\right)^2}{\left(b-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

17 tháng 3 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k (1)

=> a=bk ,c=dk

a.Có \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2)=>\(\dfrac{a+c}{b+d}=\dfrac{a}{b}\left(=k\right)\)

b. Có \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)

10 tháng 11 2018

b,

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{d}=\dfrac{a}{c}=\dfrac{b+a}{d+c}\\ \Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

c,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có: \(a=bk;c=dk\)

\(\Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k^2.\left(2b+3d\right)}{2b+3d}=k^2\\ \Rightarrow\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k^2.\left(2b-3d\right)}{2b-3d}=k^2\\ \Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

d,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

Ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{k^2.\left(b-d\right)^2}{\left(b-d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

f,

(để hôm sau lm nha, mỏi tay quá)

10 tháng 11 2018

a, \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)(1)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)=> \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Còn các phần còn lại làm giống thế

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

31 tháng 7 2018

Bài 1.

a) Nhân 2 vào tỉ số thứ 2 rồi áp dụng tính chất của dãy tỉ số bằng nhau.

Kết quả:

\(\left\{{}\begin{matrix}x=\dfrac{8}{3}\\y=3\\z=\dfrac{8}{3}\end{matrix}\right.\)

b) \(\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)

Theo tính chất dãy tỉ số bằng nhau:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2+y^2}{4+9}=\dfrac{52}{13}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\end{matrix}\right.\)

Vậy ...

Bài 2.

a) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{ac}{bd}=\dfrac{c^2}{d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}\)

\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

Vậy ...

31 tháng 7 2018

2:

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=i\Rightarrow\left\{{}\begin{matrix}a=bi\\c=di\end{matrix}\right.\)

Ta có:

\(\dfrac{ac}{bd}=\dfrac{c^2i}{d^2i}=\dfrac{c^2}{d^2}=\left(\dfrac{c}{d}\right)^2=i^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2i^2+d^2i^2}{b^2+d^2}=\dfrac{i^2\left(b^2+d^2\right)}{b^2+d^2}=i^2\)

Từ đó suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\) (đpcm)