Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}\) (1)
Lại có: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{ac}{bd}=\dfrac{c^2}{d^2}=\dfrac{2c^2}{2d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2c^2-ac}{2d^2-bd}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\).
a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)
b;c;d tương tự hết
b: a/b=c/d
nên 3a/3b=2c/2d
=>a/b=c/d=(3a+2c)/(3b+2d)
c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)
d: a/c=b/d
nên 5a/5c=2b/2d
=>a/c=b/d=(5a-2b)/(5c-2d)
Bài 1:
$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:
\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)
$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)
Từ $(1);(2)$ suy ra đpcm.
Bài 2:
Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:
$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)
b/
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
* \(\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=3a\\2c+a=3b\\2a+b=3c\end{matrix}\right.\)
+)\(\Rightarrow\left\{{}\begin{matrix}c=3a-2b\\a=3b-2c\\b=3c-2a\end{matrix}\right.\)
\(\Rightarrow\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)=abc\left(1\right)\)
+) \(\Rightarrow\left\{{}\begin{matrix}2b=3c-a\\2c=3b-a\\2a=3c-b\end{matrix}\right.\)
\(\Rightarrow\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)=8abc\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{abc}{8abc}=\dfrac{1}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
Mình hướng dẫn thôi nhé:
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\) . Sau đó thế vào biểu thức tính rồi suy ra đpcm
Ví dụ bài đầu tiên: Thế a = kb; c=kd vào biểu thức,ta có:
\(\dfrac{a}{a+b}=\dfrac{kb}{kb+b}=\dfrac{kb}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (1)
\(\dfrac{c}{c+d}=\dfrac{kd}{kd+d}=\dfrac{kd}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (2)
Từ (1) và (2) ,ta có đpcm: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Các bài sau làm tương tự:Thế a=kb ; c=kd vào biểu thức rồi tính từng vế . Sau đó so sánh hai vế. Thấy hai vế = nhau => đpcm
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
<=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{3a}{3c}=\dfrac{2b}{2d}\)
<=>\(\dfrac{5a-3b}{5c-3d}=\dfrac{3a-2b}{3c-2d}\)(đpcm)
Các câu sau tương tự
a) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)
Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)
Ta có:
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b}{d}\) (2)
Từ (1) và (2) suy ra \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)
áp dụng tính chất dãy tỉ số = nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)
= \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (đpcm)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ⇒ a = b.k ; c = d.k
\(\dfrac{3a-2c}{5a+4c}=\dfrac{3.b.k-2.d.k}{5.b.k+4.d.k}=\dfrac{k\left(3.b-2.d\right)}{k\left(5b+4d\right)}=\dfrac{3b-2d}{5b+4d}\)
\(\dfrac{3b-2d}{5b+4d}=\dfrac{3b-2d}{5b+4d}\Rightarrow\dfrac{3a-2c}{5a+4c}=\dfrac{3b-2d}{5b+4d}\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\dfrac{a}{b}=\dfrac{3a}{3b}\) ; \(\dfrac{c}{d}=\dfrac{2c}{2d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{3a+2c}{3b+2d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)
bạn ko làm hộ tớ phần b ơ