K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)

Áp dụng vào bài toán ta có:

\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:

\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)

Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Dấu = khi \(x=y=z=\frac{2008}{3}\)

14 tháng 5 2018

Ta dễ dàng chứng minh BĐT

\(x^4+y^4\ge x^3y+xy^3\)

\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x+y\right)\left(x^3+y^3\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

Chứng minh tương tự, cộng theo vế, ta có:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{2\left(x+y+z\right)}{2}=2\)

Dấu "=" xảy ra khi x=y=z=1/3

18 tháng 9 2017

Áp dụng bđt AM - GM ta có : 

\(\frac{x^3}{y^2}+x\ge2\sqrt{\frac{x^3}{y^2}.x}=\frac{2x^2}{y}\)

\(\frac{y^3}{z^2}+y\ge2\sqrt{\frac{y^3}{z^2}.y}=\frac{2y^2}{z}\)

\(\frac{z^3}{x^2}+z\ge2\sqrt{\frac{z^3}{x^2}.z}=\frac{2z^2}{x}\)

Cộng vế với vế ta được :

\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+x+y+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\)

Ta lại có : \(\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right)^2\)(bunhiacopxki)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\ge\frac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+x+y+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\ge2\left(x+y+z\right)\)

\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\ge1\)(đpcm)

11 tháng 5 2018

Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{16}{3}\) 

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{\sqrt{3}}\)

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

5 tháng 7 2015

Chứng minh một số bất đẳng thức phụ:

1. \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\ge3\)

2. \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\text{ (vừa chứng minh ở trên)}\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\)

3. \(x^2+y^2+z^2\ge xy+yz+zx\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+y+zx\right)\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow x+y+z\ge\sqrt{3\left(xy+yz+zx\right)}\ge\sqrt{3.3}=3\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{\left(x^2+y^2+z^2\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)}{4\left(x+y+z\right)}\)

\(\ge\frac{3.\frac{1}{3}\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+z}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi x = y = z = 1.

5 tháng 7 2015

C2: Áp dụng Co6si:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)

Tương tự \(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

\(\Rightarrow\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)

(\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge xy+yz+zx+2\left(xy+yz+zx\right)\)

\(=3\left(xy+yz+zy\right)\ge9\)

\(\Rightarrow x+y+z\ge3\))

Dấu "=" xảy ra khi x = y = z = 1.

24 tháng 12 2017
ghhjkkkk
2 tháng 5 2016

ta có \(\frac{1}{x^2+x}+\frac{x^2+x}{4}>=2\cdot\sqrt{\frac{1\cdot\left(x^2+x\right)}{\left(x^2+x\right)\cdot4}}=1\)

tương tự => \(\frac{1}{y^2+y}+\frac{y^2+y}{4}>=1;\frac{1}{z^2+z}+\frac{z^2+z}{4}>=1\)

=> VT >= 3-(\(\frac{x^2+x}{4}+\frac{y^2+y}{4}+\frac{z^2+z}{4}\))=3-\(\frac{x^2+y^2+z^2+3}{4}\)

mà \(\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}>=\frac{\left(x+y+z\right)^2}{4+4+4}=\frac{3}{4}\)

=> P>= 3-3/4-3/4=3/2

Dấu bằng khi x=y=z=1

3 tháng 5 2016

Bài bạn Lương Ngọc Anh bị ngược dấu nên sai hoàn toàn. Lời giải:

Ta có:

\(\frac{1}{x^2+x}=\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

Tương tự, ta được:

\(VT=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng BĐT Schwarz:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\le\frac{1}{4}\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Do đó:

\(VT\ge\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\left(1\right)\)

Mặt khác:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\left(2\right)\)

TỪ (1) VÀ (2) TA CÓ ĐIỀU PHẢI CHỨNG MINH.