Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái đề thiếu x, y, z dương bạn nhé
Với mọi x, y, z > 0 ta luôn có
\(x^3+y^3\ge x^2y+xy^2\) (1)
\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Tương tự \(y^3+z^3\ge y^2z+yz^2\) (2) và \(z^3+x^3\ge z^2x+zx^2\) (3)
Cộng (1), (2), (3) vế theo vế ta được \(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2\le2\left(x^3+y^3+z^3\right)\)
Theo BĐT Cauchy-Schwarz, ta có
\(VT=\frac{x^6}{x^3+x^2y+xy^2}+\frac{y^6}{y^3+y^2z+yz^2}+\frac{z^6}{z^3+z^2x+zx^2}\)
\(\ge\frac{\left(x^3+y^3+z^3\right)^2}{\left(x^3+y^3+z^3\right)+\left(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2\right)}\ge\frac{\left(x^3+y^3+z^3\right)^2}{\left(x^3+y^3+z^3\right)+2\left(x^3+y^3+z^3\right)}\)
\(=\frac{\left(x^3+y^3+z^3\right)^2}{3\left(x^3+y^3+z^3\right)}=\frac{x^3+y^3+z^3}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z\)
Dùng BĐT B.c.s ta có:
\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự rồi cộng lại ta có Đpcm
Dấu = khi \(x=y=z=1\)
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
Xét từng mẫu của phân thức trên ta thu được :
\(xy-2x-2y+4=x\left(y-2\right)-2\left(y-2\right)=\left(x-2\right)\left(y-2\right)\)
\(yz-27-2z+4=yz-27-2z+4\)
\(zx-2z-2x+4=z\left(x-2\right)-2\left(x-2\right)=\left(z-2\right)\left(x-2\right)\)
Vậy ta có điều kiện sau : \(x\ne2;y\ne2;z\ne2\)( đpcm )
Chứng minh một số bất đẳng thức phụ:
1. \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\ge3\)
2. \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\text{ (vừa chứng minh ở trên)}\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\)
3. \(x^2+y^2+z^2\ge xy+yz+zx\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge3\left(xy+y+zx\right)\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow x+y+z\ge\sqrt{3\left(xy+yz+zx\right)}\ge\sqrt{3.3}=3\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{\left(x^2+y^2+z^2\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)}{4\left(x+y+z\right)}\)
\(\ge\frac{3.\frac{1}{3}\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+z}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi x = y = z = 1.
C2: Áp dụng Co6si:
\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}.\frac{y+3z}{16}.\frac{1}{4}.\frac{1}{4}}=x\)
\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\)
Tương tự \(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)
\(\Rightarrow\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{x+3y}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}.3-\frac{3}{2}=\frac{3}{4}\)
(\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge xy+yz+zx+2\left(xy+yz+zx\right)\)
\(=3\left(xy+yz+zy\right)\ge9\)
\(\Rightarrow x+y+z\ge3\))
Dấu "=" xảy ra khi x = y = z = 1.