K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Ta có:
P=\(\left(X^2+y^2+z^2+2xyz\right)-\left(X^2+y^2+z^2+4xyz-xy-yz-xz\right)\) xz)
  = 1-\(\left(x^2+y^2+z^2+4xyz-xy-yz-xz\right)\)
=> P \(\le\)1
Vậy MaxP=1 

\(x^2+y^2+z^2+2xyz=1\)

\(\Leftrightarrow2xyz=1-x^2-y^2-z^2\)

\(\Rightarrow P=xy+yz+xz-2xyz=xy+yz+xz+x^2+y^2+z^2-1\)

          \(\Rightarrow2P=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2-2\ge1\)

\(\Rightarrow P\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

NV
16 tháng 2 2020

Bài này x;y;z phải dương chứ nhỉ? Có dấu "=" ở số 0 thế kia thì bối rối quá

Dự đoán dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn tồn tại 2 số nằm cùng phía so với \(\frac{1}{2}\) ; giả sử đó là x và y

\(\Rightarrow\left(x-\frac{1}{2}\right)\left(y-\frac{1}{2}\right)\ge0\Leftrightarrow\frac{1}{2}\left(x+y\right)-xy\le\frac{1}{4}\)

\(\Leftrightarrow x+y-2xy\le\frac{1}{2}\)

Mặt khác:

\(1=2xyz+x^2+y^2+z^2\ge2xyz+2xy+z^2=2xy\left(1+z\right)+z^2\)

\(\Rightarrow1-z^2\ge2xy\left(1+z\right)\Leftrightarrow\left(1-z\right)\left(1+z\right)\ge2xy\left(1+z\right)\)

\(\Leftrightarrow1-z\ge2xy\Rightarrow xy\le\frac{1-z}{2}\)

\(\Rightarrow P=xy+z\left(x+y-2xy\right)\le\frac{1-z}{2}+\frac{z}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

4 tháng 10 2019

đk j

4 tháng 10 2019

tổng đó = 1 nha, ghi thiếu

20 tháng 5 2016

\(P+3=\frac{xy}{1+x+y}+1+\frac{yz}{1+y+z}+1+\frac{xz}{1+x+z}+1\)
\(\frac{xy}{1+x+y}+1=\frac{\left(x+1\right)\left(y+1\right)}{1+x+y}\)
\(P+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(\frac{1}{\left(z+1\right)\left(x+y+1\right)}+\frac{1}{\left(y+1\right)\left(x+z+1\right)}+\frac{1}{\left(x+1\right)\left(y+z+1\right)}\right)\)
\(P+3\ge\left(xyz+xy+xz+yz+1\right)\left(\frac{9}{xy+xz+x+y+z+1+xy+yz+x+y+z+1+xz+yz+x+y+z+1}\right)\)
 

20 tháng 5 2016

dòng cuối cùng sai, sửa :
\(P+3\ge\left(xyz+xy+xz+yz+1\right)\left(\frac{9}{xy+xz+x+y+z+1+xy+yz+x+y+z+1+xz+yz+x+y+z+1}\right)\)
\(P+3\ge\left(3xyz+xy+xz+yz\right)\left(\frac{9}{2\left(3xyz+xy+xz+yz\right)}\right)=\frac{9}{2}\)
\(P\ge\frac{3}{2}\)
dấu "=" xảy ra <=> x=y=z=\(\frac{1+\sqrt{3}}{2}\)

18 tháng 8 2020

+) \(P=\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\)

\(\le\frac{1-x^2+\frac{3}{4}}{\sqrt{3}}+\frac{1-y^2+\frac{3}{4}}{\sqrt{3}}+\frac{1-z^2+\frac{3}{4}}{\sqrt{3}}\)

\(=\frac{\frac{21}{4}-x^2-y^2-z^2}{\sqrt{3}}\)

+) \(1=xy+yz+xz+2xyz\le\frac{\left(x+y+z\right)^2}{3}+\frac{2\left(x+y+z\right)^3}{27}\)

Đặt \(a=x+y+z\), ta được \(2a^3+9a^2-27\ge0\Leftrightarrow\left(2a-3\right)\left(a+3\right)^2\ge0\Rightarrow a\ge\frac{3}{2}\)

+) \(A=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{\frac{9}{4}}{3}=\frac{3}{4}\)

+) \(P\ge\frac{\frac{21}{4}-A}{\sqrt{3}}=\frac{\frac{21}{4}-\frac{3}{4}}{\sqrt{3}}=\frac{9}{2\sqrt{3}}=\frac{3\sqrt{3}}{2}\)

Dấu = xảy ra khi x = y = z = 1/2

9 tháng 4 2017

\(P=\dfrac{xy}{1+x+y}+\dfrac{yz}{1+y+z}+\dfrac{xz}{1+z+x}\)

\(P+3=\dfrac{xy}{1+x+y}+1+\dfrac{yz}{1+y+z}+1+\dfrac{xz}{1+z+x}+1\)

\(P+3=\dfrac{\left(x+1\right)\left(y+1\right)}{1+x+y}+\dfrac{\left(y+1\right)\left(z+1\right)}{1+y+z}+\dfrac{\left(x+1\right)\left(z+1\right)}{1+z+x}\)

\(P+3=\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(1+x+y\right)\left(z+1\right)}+\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(1+y+z\right)}+\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(y+1\right)\left(1+z+x\right)}\)

\(P+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\left[\dfrac{1}{\left(1+x+y\right)\left(z+1\right)}+\dfrac{1}{\left(x+1\right)\left(1+y+z\right)}+\dfrac{1}{\left(y+1\right)\left(1+z+x\right)}\right]\)

\(\ge\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\left(1+x+y\right)\left(z+1\right)+\left(x+1\right)\left(1+y+z\right)+\left(y+1\right)\left(1+z+x\right)}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2xy+2yz+2xz+3x+3y+3z+3}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2xy+2yz+2xz+3\cdot2xyz}\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2\left(xy+yz+xz+3xyz\right)}\)

Lại có:

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)=xyz+xy+yz+xz+x+y+z+1\)

\(=xyz+xy+yz+xz+2xyz=xy+yz+xz+3xyz\)

\(\Rightarrow P+3\ge\left(xy+yz+xz+3xyz\right)\cdot\dfrac{9}{2\left(xy+yz+xz+3xyz\right)}\)

\(\Rightarrow P+3\ge\dfrac{9}{2}\Rightarrow P\ge\dfrac{9}{2}-3=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1+\sqrt{3}}{2}\)