Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh Cái này :
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với \(x;y>0\)
Quy đòng chuyển vế sẽ tạo thành lũy thừa bậc 2
Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa
Ta có: \(a^2\ge0\forall a\)
\(b^2\ge0\forall b\)
GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất
GTNN của \(a^2;b^2\)là 0
\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)
Vậy GTNN của P là 0
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\ge0\)
Xảy ra khi \(\dfrac{a}{x}=\dfrac{b}{y}\)
Cho x + y = 1, x > 0 , y > 0. Tìm GTNN của biểu thức P= a^2/x+b^2/y (a và b là hằng số dương đã cho)
\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu "=" khi \(\left\{{}\begin{matrix}x=y\\x+y=1\\x,y>0\end{matrix}\right.\)\(\Rightarrow x=y=\dfrac{1}{2}\)
em bị sai dấu bằng rồi nhé! Và nên trình bày cách khác dễ hiểu hơn cho các bạn hoặc nói rõ ràng bđt em dùng