K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa

Ta có: \(a^2\ge0\forall a\)

\(b^2\ge0\forall b\)

GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất

GTNN của \(a^2;b^2\)là 0

\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)

Vậy GTNN của P là 0

14 tháng 4 2017

a;b là hằng số dương mà bạn

28 tháng 4 2020

Ta có: \(x^{1890};y^{2020}>0\) với mọi x; y khác 0 

a)  \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) dương với mọi x ; y khác 0 

khi \(19t+\frac{5}{t}>0\)

<=> \(\frac{19t^2+5}{t}>0\) 

<=> t > 0

vì 19t^2 + 5  > 0 với mọi t 

b)  \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) âm với mọi x ; y khác 0 

khi \(19t+\frac{5}{t}< 0\)

<=> \(\frac{19t^2+5}{t}< 0\) 

<=> t < 0

vì 19t^2 + 5 > 0 với mọi t 

28 tháng 4 2020

Đkxđ : t > 0

\(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\)

a) Ta có : \(x^{1890}\ge0\forall x\)\(y^{2020}\ge0\forall y\)

Để đơn thức dương => \(19t+\frac{5}{t}>0\)

=> t > 0

=> t thuộc N*

b) Ta có :\(x^{1890}\ge0\forall x\)\(y^{2020}\ge0\forall y\)

Để đơn thức âm => \(19t+\frac{5}{t}< 0\)

=> t < 0

=> t thuộc Z

2 tháng 4 2017

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu "=" khi \(\left\{{}\begin{matrix}x=y\\x+y=1\\x,y>0\end{matrix}\right.\)\(\Rightarrow x=y=\dfrac{1}{2}\)

3 tháng 4 2017

em bị sai dấu bằng rồi nhé! Và nên trình bày cách khác dễ hiểu hơn cho các bạn hoặc nói rõ ràng bđt em dùng

19 tháng 3 2017

Khó nhể...nhưng đây là bn mun giải theo cahs VH hay violympic

19 tháng 3 2017
x+y-2 = 0 nên y= 2 -x
chỗ nào có y bạn thay bằng 2-x nhé
như vậy là được
7 tháng 11 2018

\(2a^2+2b^2=5ab\)

<=>   \(2a^2+2b^2-5ab=0\)

<=>  \(2a^2-4ab-ab+2b^2=0\)

<=>   \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

<=>  \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)

Do b > a > 0

=>  b = 2a

\(A=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

7 tháng 11 2018

\(2a^2+2b^2=5ab\)

<=>   \(2a^2+2b^2-5ab=0\)

<=>  \(2a^2-4ab-ab+2b^2=0\)

<=>   \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

<=>  \(\left(2a-b\right)\left(a-2b\right)=0\)

<=>  \(\orbr{\begin{cases}2a-b=0\left(L\right)\\a-2b=0\end{cases}}\)

=>  \(a=2b\)

=>  \(A=\frac{a+2b}{2a-b}=\frac{2b+2b}{2.2b-b}=\frac{4b}{3b}=\frac{4}{3}\)

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

11 tháng 2 2018

Chứng minh Cái này :

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với \(x;y>0\)

Quy đòng chuyển vế sẽ tạo thành lũy thừa bậc 2

30 tháng 4 2020

ucche bạn trả lời kiểu gì vậy

1 tháng 5 2020

vãi sr nha hình như mk mất chữ thì phải